
Enhancing Link-Based Similarity Through the Use of
Non-Numerical Labels and Prior Information

Christian Desrosiers
Software Eng. and IT Department
Ecole de Technologie Superieure

1100 Notre-Dame W.
Montreal (QC) H3C1K3, Canada

christian.desrosiers@etsmtl.ca

George Karypis
Computer Science & Eng. Department

University of Minnesota, Twin Cities
200 Union Street SE

Minneapolis (MN) 55455, USA
karypis@cs.umn.edu

ABSTRACT
Several key applications like recommender systems require
to compute similarities between the nodes (objects or enti-
ties) of a bipartite network. These similarities serve many
important purposes, such as finding users sharing common
interests or items with similar characteristics, as well as
the automated recommendation and categorization of items.
While a broad range of methods have been proposed to com-
pute similarities in networks, such methods have two limi-
tations: (1) they require the link values to be in the form
of numerical weights representing the strength of the cor-
responding relation, and (2) they do not take into account
prior information on the similarities. This paper presents a
novel approach, based on the SimRank algorithm, to com-
pute similarities between the nodes of a bipartite network.
Unlike current methods, this approach allows one to model
the agreement between link values using any desired func-
tion, and provides a simple way to integrate prior informa-
tion on the similarity values directly in the computations. To
evaluate its usefulness, we test this approach on the problem
of predicting the ratings of users for movies and jokes.

Keywords
Networks, link-based similarity, SimRank, item recommen-
dation

1. INTRODUCTION
Computing significant similarities between objects or en-

tities of a network is an important problem that has several
key applications such as image processing, classifying web
pages, classifying protein interaction and gene expression
data, part-of-speech tagging, detecting malicious or fraudu-
lent activities, and recommending new and interesting items
to consumers. For instance, in recommender systems, one
of the most crucial tasks is to find users that share common
interests, or items with similar characteristics. This task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MLG ’10 Washington, DC USA
Copyright 2010 ACM 978-1-4503-0214-2 ...$10.00.

has several valuable uses, among which are the recommen-
dation of new items, the discovery of groups of like-minded
individuals, and the automated categorization of items.

A popular method to compute the similarity between users
or items, found in many recommender systems, is based on
the correlation between the ratings made by users on com-
mon items. As recognized by several recent works on this
topic, such as [7, 12, 28], this method is very sensitive to
sparse data. For instance, while two users can be similar
if they have rated different items, this method is unable to
evaluate their similarity in such cases. Moreover, although
efficient approaches based on dimensionality reduction and
graph theory have been proposed for this problem, they gen-
erally suffer from two limitations:

• They do not allow categorical ratings or other non-
numerical rating types;

• They do not provide an easy way to integrate prior
information on the similarity values.

To illustrate these limitations, consider the example of Fig-
ure 1. This example shows the categorical evaluation (good,
bad, ok and N/A) of two unknown criteria, given by three
users (John, Mary and Simon) to items i and j. Since the
ratings are non-numerical, traditional methods based on cor-
relation, dimensionality reduction or graph theory cannot
be used to compute the similarity between these users or
items. Furthermore, prior information on the similarity be-
tween users or items, obtained from user profiles or item
contents, is often available in recommender systems. Al-
though not considered by current methods, this information
can be used to enhance the computation of similarities.

John

Mary

Simon

Item i

Item j

{good,bad}

{bad,N/A
}

{ok,bad}
{good,ok}

{ok
,ok
}

Figure 1: A bipartite graph representing responses
(sets of categorical values) given by users to items.

This paper presents a general approach to compute simi-
larities between the nodes of a bipartite network. Based on



the well-known SimRank algorithm [14], this approach mod-
els the relations between the similarities of the two node
groups (e.g., users and items) as a system of equations,
and computes the similarity values by solving this system.
However, unlike SimRank and its recent extensions, our ap-
proach has the additional advantage of allowing one to eval-
uate the agreement between any type of link values (edge
labels), and integrate prior similarity information.

The rest of this paper is organized as follows. In Section 2,
we present some of the most relevant work on the topic and
describe the advantages of our approach over these works.
We then present the details of our approach in Section 3,
and illustrate in Section 4 its usefulness on the problem of
predicting the ratings of users for movies and jokes. Finally,
Section 5 provides a brief summary of our work and contri-
butions, and describes some of its possible extensions.

2. RELATED WORK

2.1 Similarity in networks
A wide range of methods have been proposed to compute

similarities between nodes in a network. A popular approach
is to measure the similarity between two nodes as a function
of their proximity and connectivity in the network. Methods
using this approach include those based on geodesic distance
[1, 22], diffusion and randomized kernels [15, 26], associative
retrieval [12], random forests [13], and random walks [7, 9,
28]. A common problem with these methods is their lack
of interpretability. For instance, in the case of item recom-
mendation, it is not clear how the proximity between two
users or two items in the network can be translated into a
similarity value. Moreover, these methods are limited to nu-
merical link values representing weights. Thus, it would not
be possible to use such methods in the item recommendation
context where users give non-numerical responses to items,
for instance, categorical responses or a set of numerical re-
sponses (see the example of Figure 1). Another recently
proposed method for this task, which proved useful in the
problem of classifying nodes of a network, evaluates the sim-
ilarity between two nodes in the network by comparing the
structural information of their neighborhood [5]. While this
approach considers non-numerical link values, it is not so
applicable to the context of item recommendation, as users
with different rating patterns may still be similar.

2.2 SimRank
A different approach, closely related to the one presented

in this paper is the bipartite version of the SimRank al-
gorithm, proposed by Jeh and Widom [14]. Let U and I
be the two sets of nodes of a bipartite graph representing,
for instance, the users and items of a recommender system.
Moreover, denote by Iu ⊆ I be the set of nodes connected
to a node u ∈ U (e.g., the items purchased by user u), and
let Ui ⊆ U be the set of nodes connected to a node i ∈ I
(e.g., the users that have purchased item i). The similarity
between two nodes u and v of U , s(u, v), is obtained as the
average similarity of their neighbors:

s(u, v) =
C1

|Iu||Iv|
∑
i∈Iu

∑
j∈Iv

s(i, j), (1)

where C1 ∈ [0, 1] is a constant controlling the flow of similar-
ity values on the links. Likewise, the similarity between two

nodes i and j of I, s(i, j), can be computed as the average
similarity of their neighbors in U :

s(i, j) =
C2

|Ui||Uj |
∑
u∈Ui

∑
v∈Uj

s(u, v), (2)

C2 having the same role as C1. SimRank computes the
similarity values by updating them iteratively using equa-
tions (1) and (2), until a fixed-point is reached. Several
techniques to accelerate the computation of the similarity
values have been proposed, for instance, [19, 21]. Moreover,
an extension of SimRank, which computes the similarities
over a maximum matching of neighbor nodes, was recently
proposed in [20].

A significant limitation of SimRank is that it does not con-
sider the nature nor the strength of the links. For instance,
in the context of item recommendation, this method consid-
ers the interactions between users and items (e.g., purchases)
but not the corresponding ratings. Another method called
SimRank++, recently proposed in [2], extends SimRank by
taking into account the link weights as modified transition
probabilities. In this method, the similarity between two
nodes is computed as a weighted average of the similarities
of their adjacent nodes:

s(u, v) = C1

∑
i∈Iu

∑
j∈Iv

wui wvj s(i, j), (3)

where wui is the normalized weight of the link between u
and i. Like SimRank, this method also has some limitations.
First, non-numerical link values may not be used, since these
values are simply simply multiplied in equation (3). Fur-
thermore, this method does not allow one to integrate prior
knowledge on the similarity values, for instance, obtained by
comparing the content of items in a recommender system.

2.3 Recommendation methods
Since the approach presented in this paper is evaluated

in the context of item recommendation, it is necessary to
give a brief overview of the most significant works on this
topic. Essentially, approaches proposed for the task of rec-
ommending items can be divided into two categories: neigh-
borhood- and model- based methods. Neighborhood-based
approaches recommend new items to a user either based on
the ratings of alike users, i.e. user-based recommendation
[16], or the ratings of this user on similar items, i.e. item-
based recommendation [4]. While neighborhood methods
are rather simple and have the advantage of exploiting local
information, they tend to suffer from sparse rating data [7,
28].

In contrast, model-based approaches use the rating data
to learn a predictive model using latent characteristics of
the users and items in the system, like the preference class
of users and the category class of items. This model is then
trained using the available data, and later used to predict
ratings of users for new items. Model-based recommenda-
tion methods are numerous and include Latent Semantic
Analysis (LSA) [11], Latent Dirichlet Allocation (LDA) [3],
Boltzmann machines [23], Support Vector Machines (SVM)
[10], and dimensionality reduction [17, 25, 27]. Because
ratings are predicted based on higher-level factors, model
approaches are usually less sensitive to data sparsity than
neighborhood ones [17].

Finally, a few studies, such as [6, 18], have focused on
evaluating the usefulness of link-based similarity in the task



of predicting the ratings of users for new items. While these
studies have found such methods to be somewhat inferior to
approaches specifically designed for this task, the experimen-
tal results described in this paper suggest that link-based
similarity methods could be useful in the context where the
rating data is sparse.

2.4 Contributions
This paper makes three contributions:

1. It presents a novel approach to compute similarities,
sharing common characteristics with the SimRank al-
gorithm. Unlike SimRank and its extensions, this ap-
proach also:

• Allows one to use an arbitrary function to eval-
uate the agreement between links, which makes
possible the use of non-numerical values.

• Provides an elegant way to integrate prior infor-
mation on the similarity values directly in the
computations.

2. In the context of item recommendation, unlike similar-
ity measures based on correlation which only use the
ratings on common items, this approach considers all
the available ratings. This make possible the compu-
tation of similarities between users that have rated dif-
ferent items, thereby reducing the sensitivity to sparse
data.

3. Finally, this paper presents a first comprehensive ex-
perimental evaluation of a SimRank -based method on
the problem of predicting new ratings.

3. A NOVEL APPROACH

3.1 Modeling similarities as a linear system
Following the notation introduced in the previous section,

let U and I represent the two disjoint sets of nodes of a
bipartite graph, Iu the nodes of I linked to a node u ∈ U ,
and Ui the nodes of U linked to a node i ∈ I. Moreover,
if nodes u and i are linked, denote as rui the numerical or
categorical value of this link.

Consider the task of evaluating the similarity s(u, v) be-
tween two nodes u, v ∈ U . A simple approach, used in sev-
eral item recommendation systems, is to evaluate s(u, v) as
the correlation evaluated over the values of links to common
nodes, i.e. Iu ∩ Iv. On top of being limited to numeri-
cal values, this approach has another significant problem:
similarities can only be evaluated for nodes having common
neighbors, e.g. users that have evaluated common items,
and the correlation values are only significant if there is a
sufficient number of common nodes. For these reasons, the
correlation approach gives poor results when the bipartite
graph is sparse.

As in SimRank, our approach overcomes these limitations
by using the information of links to all neighbors of u and
v, not only their common ones. Thus, we evaluate the simi-
larity between nodes u and v as the average link agreement
for all pairs of neighbors, weighted by the similarity of these
neighbors:

s(u, v) =
1

Zuv

∑
i∈Iu

∑
j∈Iv

s(i, j) k(rui, rvj), (4)

where k is a function that evaluates the agreement between
two (possibly non-numerical) link values, and Zuv is a nor-
malization constant, for instance, Zuv = |Iu||Iv|. Examples
of agreement function k for numerical link values are the
Radial Basis Function (RBF) Gaussian kernel

kRBF(rui, rvj) = exp{−(rui − rvj)2/γ2}, (5)

where γ controls the width of the kernel, and the Correlation
kernel

kCor(rui, rvj) =
(rui − ru)(rvj − rv)

σu σv
, (6)

ru and σu being the mean and standard deviation of values
for links connecting u to its neighbor nodes. Note that k
does not need to be semi-definite positive (SDP), and the
term kernel is used in a more general way to represent a
function measuring similarity.

A benefit of this formulation is that the agreement be-
tween the link values is abstracted in function k, which can
be tailored to model specific characteristics or constraints
of the system, as well as to measure the agreement between
any value types. Moreover, this formulation can be easily
extended to include prior information on the similarity be-
tween nodes u and v, obtained, for example, by comparing
user profiles or item content. Denote ŝ(u, v) the a priori
similarity capturing this information, (4) can be extended
to include ŝ(u, v) as

s(u, v) = (1−α) ŝ(u, v) +
α

Zuv

∑
i∈Iu

∑
j∈Iv

s(i, j) k(rui, rvj),

(7)
where α ∈ [0, 1] controls the importance of the a priori sim-
ilarity in the computation. Likewise, the similarity s(i, j)
between two nodes i, j ∈ I can be modeled as

s(i, j) = (1− α) ŝ(i, j) +
α

Zij

∑
u∈Ui

∑
v∈Uj

s(u, v) k(rui, rvj),

(8)
where ŝ(i, j) models prior knowledge on the similarity be-
tween i and j, and Zij has the same role as Zuv.

3.2 Solving the general system
The relations between similarity values, as defined by equa-

tions (7) and (8), form a linear system which can be de-

scribed using a matricial notation. Let ~x ∈ R|U|
2

and ~y ∈
R|I|

2

be vectors such that, for each pair of nodes u, v ∈ U ,
~x(uv) = s(u, v) and, for each pair of nodes i, j ∈ I, ~y(ij) =

s(i, j). Furthermore, let ~c ∈ R|U|
2

and ~d ∈ R|I|
2

be vec-

tors such that ~c(uv) = ŝ(u, v) and ~d(ij) = ŝ(i, j). The linear
system can be written in matrix form as(

~x
~y

)
= (1− α)

(
~c
~d

)
+ α

(
0 A
B 0

)(
~x
~y

)
. (9)

where A is a (|U|2 × |I|2) matrix such that

A(uv)(ij) =

{
1

Zuv
k(rui, rvj), if i ∈ Iu and j ∈ Iv,

0, otherwise,

and B is a (|I|2 × |U|2) matrix such that

B(ij)(uv) =

{ 1
Zij

k(rui, rvj), if u ∈ Ui and v ∈ Uj ,
0, otherwise.



The solution of this system is then given by(
~x
~y

)
= (1− α)

(
I −αA
−αB I

)−1( ~c
~d

)
= (1− α)

(
R−1 αAS−1

αBR−1 S−1

)(
~c
~d

)
, (10)

where R = (I − α2AB) and S = (I − α2BA).
Note that R−1 and S−1 exist and can be computed using

a von Neumann series expansion [15, 18]:

R−1 =
∞∑
n=0

α2n(AB)n (11)

S−1 =
∞∑
n=0

α2n(BA)n. (12)

The solution for ~x can therefore be expressed as

~x = (1− α)

(
∞∑
n=0

α2n(AB)n~c + αA
∞∑
n=0

α2n(BA)n ~d

)

=

(
∞∑
n=0

α2n(AB)n
)
~p

= R−1~p (13)

where ~p = (1 − α)
(
~c + αA~d

)
. Using the same approach,

~y is obtained as

~y =

(
∞∑
n=0

α2n(BA)n
)
~q

= S−1~q, (14)

where ~q = (1− α)
(
αB~c + ~d

)
.

3.3 Computing the similarities
Although A and B may be very sparse matrices, their

large size can render difficult the direct computation of R−1

and S−1. A more efficient approach consists in using an iter-
ative method based on the von Neumann series expansion
of the matrices. While we only describe how this method
can be used to compute ~x, the same principles can also be
applied to find ~y.

This method first initializes ~x to the null vector and ini-
tializes a temporary vector ~w to ~p. The following two steps
are then repeated until convergence or a maximum number
of iterations is reached:

1. Update the similarities vector:

~x ← ~x+ ~w,

2. Update the temporary vector:

~w ← α2AB~w.

Theorem 1. Denote by λmax the largest eigenvalue of
matrix AB, also known as its spectral radius. The iterative
method presented above converges if α2|λmax| < 1.

Proof. Let XΛX−1 be the eigen-decomposition of ma-
trix AB. At the n-th iteration, we have

||α2n(AB)n|| = ||X(α2Λ)nX−1||

≤ ||X|| ·
√∑

i

(α2λi)2n · ||X−1||.

If α2|λmax| < 1 then ||α2n(AB)n|| will converge to 0 as n
approaches infinity. As a consequence, ~x will converge to a
fixed value.

To analyze the complexity of this approach, we suppose
the maximum number of neighbors of a node u ∈ U to be
bounded by a constant m. This is consistent with many
applications like item recommendation systems, where users
typically purchase/rate a limited number of items, indepen-
dent of the total number of available items. Since A(uv)(ij)

is non-zero only if i ∈ Iu and j ∈ Iv, assuming an even dis-
tribution of links among the nodes, the expected number of
non-zero values in A is given by

|U|2 |I|2

2
×
(
m

|I|

)2

=
|U|2m2

2
∈ O(|U|2).

Likewise, we find the expected number of non-zero elements
of B to be in O(|U|2). Moreover, because the method has to
store the non-zero values of A and B, as well as the values
of possibly dense vectors ~x and ~p, the expected space com-
plexity of the method is O(|U|2). For the time complexity,
the dominant operations are the two matrix multiplications:
B~w = ~w′ and A~w′. Since the complexity of these opera-
tions is proportional to the number of non-zero elements in
the multiplying matrices, the total expected time complex-
ity of the method is O(nmax|U|2), where nmax is the maxi-
mum number of iterations made by the method. While nmax

largely depends on the normalization constants Zuv and Zij ,
as well as on the link agreement function k, in our experi-
ments, the method would normally take 5 to 10 iterations
to converge.

3.4 Solving without prior information
Although it is always possible to use default values for ~c

and ~d, for instance ~c(uv) = 1 if u = v and 0 otherwise, the
approach proposed in this paper could also be used without
such information. The following theorem explains how this
can be done.

Theorem 2. Let G be a directed weighted bipartite graph
constructed such that each pair of users u, v corresponds to
a node (uv) from the first set of nodes, each pair of items
i, j is a node (ij) from the second set, and whose adjacency
matrix is

adj(G) =

(
0 A
B 0

)
.

If α = 1, A,B are non-negative matrices and G is connected,
then vectors ~x and ~y correspond, respectively, to the unique
eigenvectors of matrices AB and BA associated with the
largest eigenvalue of these matrices. Moreover, these eigen-
vectors can be computed using a power iteration method [8].

Proof. Suppose we constrain ~x and ~y to a specific length,
for instance ||~x|| = ||~y|| = 1, then equations (7) and (8) can
be expressed as ~x = 1

ω
A~y and ~y = 1

σ
B~x, where ω and σ are

normalization constants. Inserting the second one into the
first, we get (σω)~x = AB~x and, thus, ~x is an eigenvector of
AB corresponding to the eigenvalue λ = σω. Likewise, ~y is
an eigenvector of BA corresponding to the same eigenvalue.

Furthermore, since A and B are non-negative, so are ma-
trices AB and BA. Also, because G is connected, and since
A(uv)(ij) > 0 if and only if B(ij)(uv) > 0, G is also strongly

connected. Consequently the graph with node set U2 and



adjacency matrix AB, and the graph with node set I2 and
adjacency matrix BA are also strongly connected. This,
in turn, is equivalent to saying that AB and BA are irre-
ducible matrices. Finally, since AB and BA are square, non-
negative, irreducible matrices, by the Perron-Frobenius the-
orem on non-negative matrices, the eigenspace correspond-
ing to the eigenvalue λmax of largest magnitude is of di-
mension one and contains an eigenvector whose components
are all positive. Running two parallel power iteration meth-
ods on matrices AB and BA will therefore converge to the
unique positive eigenvectors of AB and BA, associated to
λmax [8]. The convergence of this method is geometric with

respect to
|λ′max|
|λmax| < 1, where λ′max is the eigenvalue of second

largest magnitude.

Following Theorem 2, the similarity values can be com-
puted by repeating the following two steps until convergence:

1. Update the normalized user similarities with:

~x← A~y

||A~y|| ,

2. Update the normalized item similarities with:

~y ← B~x

||B~x|| .

Once again, this approach usually converges within a few
iterations and the complexity of each iteration is reduced by
the fact that matrices A and B are normally quite sparse.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate our approach on the task of

predicting the ratings of users for movies and jokes. As it
is tailored to compute similarities, and not specifically to
predict ratings, it should be recognized that our approach
is not directly comparable with state-of-the-art methods for
this task. Yet, evaluating our approach on this problem still
provides valuable information, as it allows us to measure
the quality of its computed similarities. To this end, we
compare the similarities obtained by our method with those
computed with correlation-based and dimensionality reduc-
tion methods, in the nearest-neighbor prediction of ratings.
Since all three types of similarities use the same approach
to predict ratings, more accurate predictions indicate more
relevant similarity values.

4.1 Tested methods
In our experiments we compared three methods to com-

pute similarities. The first one, called ESR (Enhanced Sim-
Rank), is the approach described in this paper. For these
experiments, we used Zuv = |Iu||Iv| and Zij = |Ui||Uj | as
normalization constants and the Gaussian RBF kernel of (5)
with γ = 0.05 as the rating agreement function. This kernel
has the advantage of being non-negative (see Theorem 2).
However, this kernel was used in a slightly different way for
matrices A and B. Thus, for A, the kernel was computed
on the normalized ratings (rui−ru)/(rmax−rmin), where ru
is the average rating given by user u and rmin, rmax are the
minimum and maximum values of the rating range. For B,
however, the kernel was computed on ratings normalized as
(rui− ri)/(rmax− rmin), where ri is the average rating given

to item i. Finally, we used α = 0.95 as the blending factor
and defined the a priori similarity values as

ŝ(u, v) (resp. ŝ(i, j)) =

{
1.0, if u = v (resp. i = j),
0.1, otherwise.

These parameter values were selected based on cross-validation.
The second method, denoted by PCC, is the Pearson cor-

relation similarity. Following the literature (e.g., see [24]),
we computed user similarities as

s(u, v) =

∑
i∈Iuv

(rui − ru)(rvi − rv)√ ∑
i∈Iuv

(rui − ru)2
∑

i∈Iuv

(rvi − rv)2
, (15)

where Iuv = Iu ∩ Iv. Likewise, the item similarities were
obtained as follows:

s(i, j) =

∑
u∈Uij

(rui − ri)(ruj − rj)√ ∑
u∈Uij

(rui − ri)2
∑

u∈Uij
(ruj − rj)2

, (16)

where Uij = Ui ∩ Uj ,
Finally, the third method, called SVD, is based on the

decomposition of the rating matrix [25]. Similar to the ap-
proach described in [27], we represented each user u by a
vector ~pu ∈ Rf and each item by a vector ~qi ∈ Rf , where
f is the dimensionality of the latent space. Vectors ~pu and
~qi were then learned from the data by solving the following
problem:

min
~p·,~q·

∑
zui∈D

(
zui − ~p>u ~qi

)2
s.t. ||~pu|| = ||~qi|| = 1, ∀u ∈ U , ∀i ∈ I, (17)

where zui = (rui − ri)/(rmax − rmin). This problem corre-
sponds to finding, for each user u and item i, coordinates
on the surface of the f -dimensional unit sphere such that u
will give a high rating to i if their coordinates are near on
the surface1. If two users u and v are nearby on the surface,
then they will give similar ratings to the same items, and,
thus, the similarity between these users can be computed as
s(u, v) = ~p>u ~pv. Likewise, the similarity between two items
i and j can be obtained as s(i, j) = ~q>i ~qj . Based on cross-
validation, we have used f = 50 in our experiments.

The similarities obtained with these three methods were
used to predict ratings rui in two different ways. In the first
approach, called user-based prediction [16], the K nearest-
neighbors of u that have rated i, denoted byNi(u), are found
with the users similarities. The ratings of these users for i
are then used to predict rui as

r̂ui = ru +

∑
v∈Ni(u)

s(u, v) · (rvi − rv)∑
v∈Ni(u)

|s(u, v)| . (18)

The second approach, known as item-based prediction [4],
instead uses the item similarities to find the K nearest-
neighbors of item i that have been rated by u, denoted by

1This differs from the approach described in [27], where
the norm of the user and item vectors is free but penalized
through regularization.



Nu(i), and predicts ratings as

r̂ui = ri +

∑
j∈Nu(i)

s(i, j) · (ruj − rj)∑
j∈Nu(i)

|s(i, j)| . (19)

In the experiments presented in this section, we used K = 50
as the number of nearest-neighbors considered in the predic-
tion.

4.2 Benchmark datasets
We tested the prediction approaches on three different

real-life datasets, MovieLens2, Netflix3 and Jester4, coming
from systems recommending movies and jokes. The prop-
erties of these datasets are given in Table 1. Compared to
the other two, the Jester dataset is particularly dense, with
410,000 ratings per joke on average. This dataset also differs
from the others by the fact that its rating scale is continuous.

Table 1: Properties of the benchmark datasets.
Property MovieLens Netflix Jester

Type Movies Movies Jokes
Users 6,040 480,189 72,421
Items 3,952 17,770 100
Ratings 1 M 100 M 4.1 M
Range [1,5] [1,5] [-10,10]
Integer Yes Yes No

To generate datasets of various sparsity levels, we ran-
domly selected 5,000 users from the Netflix and Jester datasets,
and discarded the ratings that were not made by these users
(the ratings of the MovieLens dataset were all kept). Then,
for all three datasets, we sub-sampled the ratings of the re-
maining users by randomly selecting a user u ∈ U with a
probability proportional to |Iu| and randomly removed one
of its ratings from Iu. We repeated this sub-sampling pro-
cess until |U| × ρu ratings were left, where ρu is the desired
average number of ratings per user. To avoid having users
with too few ratings, however, we allowed removing a rat-
ing from user u only if |Iu| > 0.5×ρu. Using an average
number of ratings ρu of 5, 10, 15 and 20, we obtained with
this approach four subsets for each of the MovieLens, Net-
flix and Jester datasets. Note that, although the MovieLens
and Netflix datasets contain information on the users and
movies, as well as timestamps indicating when the ratings
were made, we did not take such information into account
in these experiments.

To assess the performance of these strategies, we used a
10-fold cross-validation scheme, where the dataset D was
randomly split in 10 equal sized subsets Dk, k = 1, . . . , 10.
For each k, we used

⋃
l 6=k Dl to compute the user and item

similarities (training phase) and then evaluated the Mean
Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) on subset Dk. The reported error values were taken
as the mean errors over all 10 subsets.

4.3 Prediction results
2http://www.grouplens.org/
3http://www.netflixprize.com/
4http://www.ieor.berkeley.edu/~goldberg/
jester-data/

Tables 2, 3, 4 present the results for the six rating pre-
diction methods on the MovieLens, Netflix and Jester data
subsets. The lower the MAE and RMSE values, the more
accurate are the methods at predicting ratings. Moreover,
the #NN values give the average number of neighbors used
in the predictions. A low value indicates that a significant
portion of the user or item similarities are equal to zero, due
to data sparsity.

Table 2: Average MAE and RMSE (and correspond-

ing standard deviation) obtained for the MovieLens data

subsets with average number of ratings per user ρu ∈
{5, 10, 15, 20}. #NN gives the average number of neigh-

bors used in the predictions.

ρu Result
USER-BASED PREDICTION

PCC SVD ESR

MAE 0.934 (.011) 0.870 (.014) 0.854 (.011)
5 RMSE 1.236 (.012) 1.156 (.017) 1.128 (.012)

#NN 0.7 24.5 24.5
MAE 0.897 (.009) 0.798 (.010) 0.783 (.009)

10 RMSE 1.170 (.009) 1.060 (.010) 1.036 (.011)
#NN 8.2 34.1 34.1
MAE 0.841 (.008) 0.776 (.006) 0.762 (.010)

15 RMSE 1.104 (.010) 1.033 (.009) 1.006 (.010)
#NN 19.7 38.7 38.7
MAE 0.807 (.007) 0.773 (.005) 0.753 (.006)

20 RMSE 1.063 (.006) 1.027 (.007) 0.991 (.005)
#NN 29.3 41.4 41.4

ρu Result
ITEM-BASED PREDICTION

PCC SVD ESR

MAE 0.857 (.018) 0.883 (.018) 0.811 (.011)
5 RMSE 1.134 (.017) 1.162 (.017) 1.076 (.012)

#NN 0.6 4.2 4.2
MAE 0.860 (.004) 0.832 (.008) 0.754 (.010)

10 RMSE 1.133 (.007) 1.096 (.011) 1.005 (.012)
#NN 3.9 10.4 10.4
MAE 0.818 (.008) 0.803 (.007) 0.735 (.008)

15 RMSE 1.079 (.010) 1.061 (.007) 0.979 (.010)
#NN 8.1 15.6 15.6
MAE 0.785 (.007) 0.786 (.010) 0.723 (.006)

20 RMSE 1.039 (.007) 1.038 (.011) 0.965 (.007)
#NN 13.3 21.1 21.1

From these results, we can see that the similarity values
obtained by our method leads to more accurate predictions
than those of the SVD method, even though these predic-
tions were made with the same number of neighbors. More-
over, compared to PCC, our method also leads to better
results on the sparser datasets MovieLens and Netflix. How-
ever, in the denser Jester dataset, PCC similarities produce
more accurate predictions for ρu = 15 and ρu = 20. Even
though we have used only a sub-sample of the ratings, one
should note that the Jester data subsets tested in our ex-
periments are still very dense. Thus, for ρu = 15, users still
have rated on average 15% of the jokes. Nevertheless, the
results of this experiments seem to indicate that our method
provides better similarity values when the data is sparse, but
correlation based approaches might be superior when a large
number of ratings is available.

5. SUMMARY AND FUTURE WORKS
This paper presented a novel approach to compute similar-

ities, related to the SimRank algorithm. Like this algorithm,
our approach uses a formulation that associates similarities



Table 3: Average MAE and RMSE (and corresponding

standard deviation) for the Netflix data subsets with av-

erage number of ratings per user ρu ∈ {5, 10, 15, 20}. #NN

gives the average number of neighbors used in the pre-

dictions.

ρu Result
USER-BASED PREDICTION

PCC SVD ESR

MAE 0.914 (.016) 0.896 (.020) 0.877 (.020)
5 RMSE 1.216 (.021) 1.190 (.021) 1.166 (.022)

#NN 0.5 18.7 18.7
MAE 0.890 (.013) 0.845 (.007) 0.811 (.011)

10 RMSE 1.170 (.014) 1.117 (.007) 1.081 (.012)
#NN 5.2 26.9 26.9
MAE 0.867 (.008) 0.832 (.011) 0.790 (.011)

15 RMSE 1.134 (.011) 1.102 (.011) 1.055 (.011)
#NN 12.9 31.0 31.0
MAE 0.839 (.007) 0.824 (.007) 0.776 (.008)

20 RMSE 1.103 (.009) 1.090 (.007) 1.037 (.009)
#NN 20.5 33.7 33.7

ρu Result
ITEM-BASED PREDICTION

PCC SVD ESR

MAE 0.929 (.012) 0.960 (.019) 0.881 (.011)
5 RMSE 1.220 (.015) 1.247 (.021) 1.164 (.016)

#NN 0.4 4.3 4.3
MAE 0.920 (.010) 0.894 (.013) 0.819 (.007)

10 RMSE 1.213 (.011) 1.171 (.012) 1.086 (.010)
#NN 2.5 10.6 10.6
MAE 0.893 (.010) 0.867 (.008) 0.792 (.011)

15 RMSE 1.175 (.011) 1.137 (.010) 1.058 (.013)
#NN 5.5 15.9 15.9
MAE 0.860 (.006) 0.848 (.005) 0.776 (.005)

20 RMSE 1.138 (.005) 1.114 (.008) 1.039 (.006)
#NN 9.2 21.4 21.4

between linked objects of two different sets. However, un-
like SimRank and its extensions, our approach allows one to
model the agreement between link values using any desired
function. Moreover, it also provides an elegant way to inte-
grate prior information on the similarity values directly in
the computations.

To illustrate its usefulness, we have described how this ap-
proach can be used to evaluate the similarities between the
users or the items of a recommender system, based on the
ratings of users on items. In contrast to the traditional meth-
ods using rating correlation, our approach has the benefit of
considering all the available ratings made by two users, mak-
ing possible the computation of similarities between users
that have rated different items. Also, as opposed to more re-
cent recommendation methods, this approach is not limited
to numerical ratings and provides a simple way to integrate
information on item content or user profile similarity. Fi-
nally, experiments conducted on the problem of predicting
new ratings on three different real-life datasets have shown
the similarities obtained with our approach to lead to more
accurate predictions than those obtained by two other meth-
ods based on Pearson correlation and on SVD, when the data
is sparse.

In future works, we would like to deeper investigate the
impact of using prior knowledge on the similarities, for in-
stance, obtained from user profiles and item content. More-
over, we also consider defining and evaluating other types
of rating agreement functions, in particular, in the setting
where ratings are non-numerical.

Table 4: Average MAE and RMSE (and corresponding

standard deviation) for the Jester data subsets with av-

erage number of ratings per user ρu ∈ {5, 10, 15, 20}. #NN

gives the average number of neighbors used in the pre-

dictions.

ρu Result
USER-BASED PREDICTION

PCC SVD ESR

MAE 4.076 (.072) 3.940 (.050) 3.896 (.064)
5 RMSE 5.194 (.081) 5.063 (.079) 5.017 (.073)

#NN 39.5 50.0 50.0
MAE 3.710 (.059) 3.675 (.053) 3.655 (.062)

10 RMSE 4.695 (.067) 4.702 (.054) 4.651 (.074)
#NN 50.0 50.0 50.0
MAE 3.665 (.035) 3.571 (.029) 3.581 (.038)

15 RMSE 4.617 (.049) 4.567 (.032) 4.538 (.049)
#NN 50.0 50.0 50.0
MAE 3.634 (.018) 3.505 (.019) 3.541 (.015)

20 RMSE 4.568 (.027) 4.490 (.024) 4.480 (.025)
#NN 50.0 50.0 50.0

ρu Result
ITEM-BASED PREDICTION

PCC SVD ESR

MAE 4.060 (.047) 4.714 (.083) 3.809 (.058)
5 RMSE 5.212 (.065) 5.953 (.109) 4.891 (.069)

#NN 4.1 4.1 4.1
MAE 3.588 (.052) 4.345 (.042) 3.603 (.055)

10 RMSE 4.587 (.069) 5.410 (.041) 4.592 (.067)
#NN 9.1 9.1 9.1
MAE 3.476 (.039) 4.193 (.038) 3.539 (.039)

15 RMSE 4.434 (.050) 5.184 (.038) 4.493 (.051)
#NN 13.9 13.9 13.9
MAE 3.431 (.020) 4.143 (.031) 3.511 (.018)

20 RMSE 4.365 (.028) 5.105 (.032) 4.444 (.027)
#NN 18.9 18.9 18.9

6. REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu.

Horting hatches an egg: A new graph-theoretic
approach to collaborative filtering. In KDD ’99: Proc.
of the 5th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 201–212, New
York, NY, USA, 1999. ACM.

[2] I. Antonellis, H. G. Molina, and C. C. Chang.
Simrank++: query rewriting through link analysis of
the click graph. Proc. of the VLDB Endowment,
1(1):408–421, 2008.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[4] M. Deshpande and G. Karypis. Item-based top-N
recommendation algorithms. ACM Transaction on
Information Systems, 22(1):143–177, 2004.

[5] C. Desrosiers and G. Karypis. Within-network
classification using local structure similarity. In ECML
PKDD ’09: Proc. of the European Conf. on Machine
Learning and Knowledge Discovery in Databases,
pages 260–275, Berlin, Heidelberg, 2009.
Springer-Verlag.

[6] F. Fouss, A. Pirotte, and M. Saerens. A novel way of
computing similarities between nodes of a graph, with
application to collaborative recommendation. In WI
’05: Proc. of the 2005 IEEE/WIC/ACM Int. Conf. on
Web Intelligence, pages 550–556, Washington, DC,
USA, 2005. IEEE Computer Society.



[7] F. Fouss, J.-M. Renders, A. Pirotte, and M. Saerens.
Random-walk computation of similarities between
nodes of a graph with application to collaborative
recommendation. IEEE Transactions on Knowledge
and Data Engineering, 19(3):355–369, 2007.

[8] G. H. Golub and C. F. Van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, 1996.

[9] M. Gori and A. Pucci. Itemrank: a random-walk based
scoring algorithm for recommender engines. In Proc.
of the 2007 IJCAI Conf., pages 2766–2771, 2007.

[10] M. Grcar, B. Fortuna, D. Mladenic, and
M. Grobelnik. knn versus svm in the collaborative
filtering framework. Data Science and Classification,
pages 251–260, 2006.

[11] T. Hofmann. Collaborative filtering via gaussian
probabilistic latent semantic analysis. In SIGIR ’03:
Proc. of the 26th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval,
pages 259–266, New York, NY, USA, 2003. ACM.

[12] Z. Huang, H. Chen, and D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem
in collaborative filtering. ACM Transactions on
Information Systems, 22(1):116–142, 2004.

[13] T. Ito, M. Shimbo, T. Kudo, and Y. Matsumoto.
Application of kernels to link analysis. In KDD ’05:
Proc. of the eleventh ACM SIGKDD Int. Conf. on
Knowledge Discovery in Data Mining, pages 586–592,
New York, NY, USA, 2005. ACM.

[14] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD ’02: Proc. of the
eighth ACM SIGKDD Int. Conf. on Knowledge
discovery and data mining, pages 538–543, New York,
NY, USA, 2002. ACM.

[15] R. I. Kondor and J. D. Lafferty. Diffusion kernels on
graphs and other discrete input spaces. In ICML ’02:
Proc. of the Nineteenth Int. Conf. on Machine
Learning, pages 315–322, San Francisco, CA, USA,
2002. Morgan Kaufmann Publishers Inc.

[16] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl. GroupLens: applying
collaborative filtering to usenet news. Communications
of the ACM, 40(3):77–87, 1997.

[17] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD’08:
Proc. of the 14th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages
426–434, New York, NY, USA, 2008. ACM.

[18] J. Kunegis, A. Lommatzsch, and C. Bauckhage.
Alternative similarity functions for graph kernels. In
Proc. of the Int. Conf. on Pattern Recognition, 2008.

[19] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and
T. Wu. Fast computation of simrank for static and
dynamic information networks. In EDBT ’10: Proc. of
the 13th Int. Conf. on Extending Database Technology,
pages 465–476, New York, NY, USA, 2010. ACM.

[20] Z. Lin, M. R. Lyu, and I. King. Matchsim: a novel
neighbor-based similarity measure with maximum
neighborhood matching. In CIKM ’09: Proc. of the
18th ACM Conf. on Information and Knowledge
Management, pages 1613–1616, New York, NY, USA,
2009. ACM.

[21] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov.

Accuracy estimate and optimization techniques for
simrank computation. volume 1, pages 422–433.
VLDB Endowment, 2008.

[22] H. Luo, C. Niu, R. Shen, and C. Ullrich. A
collaborative filtering framework based on both local
user similarity and global user similarity. Machine
Learning, 72(3):231–245, 2008.

[23] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
boltzmann machines for collaborative filtering. In
ICML ’07: Proc. of the 24th Int. Conf. on Machine
learning, pages 791–798, New York, NY, USA, 2007.
ACM.

[24] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW ’01: Proc. of the 10th Int. Conf.
on World Wide Web, pages 285–295, New York, NY,
USA, 2001. ACM.

[25] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Application of dimensionality reduction in
recommender systems - A case study. In ACM
WebKDD Workshop, 2000.

[26] A. Smola and R. Kondor. Kernels and regularization
on graphs. In Proc. of the 2003 Conf. on
Computational Learning Theory (COLT) and Kernels
Workshop, pages 144–158. M.Warmuth and B.
Schölkopf, 2003.

[27] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major
components of the gravity recommendation system.
SIGKDD Exploration Newsletter, 9(2):80–83, 2007.

[28] H. Yildirim and M. S. Krishnamoorthy. A random
walk method for alleviating the sparsity problem in
collaborative filtering. In RecSys ’08: Proc. of the
2008 ACM Conf. on Recommender systems, pages
131–138, New York, NY, USA, 2008. ACM.


