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STATIC AND DYNAMIC SELECTION OF ENSEMBLE OF CLASSIFIERS

Albert Hung-Ren KO

ABSTRACT

This thesis focuses on different techniques of ensemble of classifier (EoC) methods that
will help improve pattern recognition results.

Pattern recognition can, in general, be regarded as a problem of classification, where dif-
ferent patterns are presented and we need to classify them into specified classes. We create
classifiers to perform the classification task. One way to improve the recognition rates of
pattern recognition tasks is to improve the accuracy of individual classifiers, and another is
to apply ensemble of classifiers (EoC) methods. EoC methods use multiple classifiers and
combine their outputs. In general, the combined results of these multiple classifiers can
be significantly better than those of the single best classifier. In this thesis, we only look
into the techniques that improve EoC accuracy and not those that improve the accuracy of
a single classifier.

Three major topics are associated with EoCs: ensemble creation, ensemble selection and
classifier combination. In this thesis, we propose a new ensemble creation method for an
ensemble of hidden markov models (EoHMM), three methods for ensemble selection for
different circumstances, and a classifier combination method.

First and foremost, we propose compound diversity functions (CDF), which combine di-
versities with the performance of each individual classifier, and show that there is a strong
correlation between the proposed functions and ensemble accuracy. We will demonstrate
that most compound diversity functions are better than traditional diversity measures.

We also propose a pairwise fusion matrix (PFM) transformation, which produces reliable
probabilities for the use of a classifier combination and can be amalgamated with most
existing fusion functions for combining classifiers. The PFM requires only crisp class
label outputs from classifiers, and is suitable for high-class problems or problems with
few training samples. Experimental results suggest that the performance of a PFM can be
a notch above that of the simple majority voting rule (MAJ), and that a PFM can work on
problems where a Behavior Knowledge Space (BKS) might not be applicable.

Also proposed here is a new scheme for the optimization of codebook sizes for HMMs
and the generation of HMM ensembles. By using a pre-selected clustering validity index,
we show that HMM codebook size can be optimized without training HMM classifiers.
Moreover, the proposed scheme yields multiple optimized HMM classifiers, and each
individual HMM is based on a different codebook size.
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Two other alternative ensemble selection methods are also proposed here: a dynamic en-
semble selection method, and a classifier-free ensemble selection method. The former
applies different ensembles for test patterns, and the experimental results suggest that in
some cases it performs better than both static ensemble selection and dynamic classifier
selection. The latter explores the idea of "data diversity" for data subset selection. We
try to select adequate feature subsets for Random Subspaces, and only use the select data
subsets to create classifiers.

The main objective of the proposed methods is to offer applicable approaches that might
advance the state of the art. But EoC optimization is a very complex issue and is related
to a number of varied processes, and our contribution is intended merely to provide an
improved understanding of the use of EoCs.
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SOMMAIRE

Cette thèse porte sur différents aspects concernant la création des ensembles de classifica-
teurs (EoC) pour la mise en oeuvre de systèmes de reconnaissance de formes robustes.

La reconnaissance de formes peut être vue comme un problème de classification o des ob-
jets inconnus (patterns) doivent être associés à une classe d’appartenance. Afin de réaliser
cette tâche, des classificateurs doivent être sélectionnés suite au processus d’apprentissage
sur une base de données représentative du problème de reconnaissance. Une approche
classique consiste à choisir le classificateur le plus performant sur une base de validation;
une autre approche consiste à choisir et à combiner un ensemble de classificateurs. Il a
été montré dans la littérature qu’en général, les EoC généralisent mieux que les classifi-
cateurs indivituels sur des nouvelles données. Dans cette thèse, plusieurs aspects traitant
de la création des EoC sont analysés et plusieurs méthodes novatrices sont proposées afin
d’obtenir des EoC les plus performants.

Trois mécanismes fondamentaux régissent la création des EoC : la génération des clas-
sificateurs individuels, la sélection des classificateurs les plus diversifiés et finalement
la fusion des classificateurs pour former des EoC. Nous présentons dans cette thèse une
nouvelle méthode pour la génération de HMM pour la création d’ensembles de HMM
(EoHMM), trois nouvelles méthodes de sélection et une nouvelle méthode de fusion.

Dans un permier temps, une nouvelle fonction objective CFD est proposée pour la sélec-
tion des classificateurs pertinents. Cette fonction est basée sur les performances individu-
elles des classificateurs de l’ensemble et d’une mesure de diversité mesurée entre les pairs
de classificateurs. Nous avons montré expérimentalement que la mesure de diversité pro-
posée est supérieure aux mesures de diversité publiées dans la littérature pour la sélection
des classificateurs.

Ensuite une nouvelle fonction de fusion basée sur une matrice de transformation pairwise
(PFM) permet l’estimation fiable des probabilités a postériori dans les cas o le problème
de reconnaissance comporte un grand nombre de classes. La transformation proposée a
l’avantage d’être indépendante du type de sorties des classificateurs (étiquettes, scores,
probabilités a posteriori, etc) et celle-ci est bien adaptée pour les bases d’apprentissage
de petite taille. Nous avons montré empiriquement que la nouvelle fonction de fusion
PFM montre en moyenne une meilleure performance que le vote majoritaire (MAJ), et se
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comporte avantageusement par rapport à la méthode BKS dans plusieurs cas o le nombre
de classes est très important.

Une nouvelle méthode pour la création des ensembles de HMM (EoHMM) est également
proposée. Cette approche est basée sur le choix des N meilleurs codebooks choisis à par-
tir de l’indice de validité des partitions XB, mesuré sur des partitions différentes de la
base d’apprentissage. Un avantage de la méthode proposée est que le choix des meilleurs
codebooks est effectué sans recourir à l’apprentissage des HMM. Le choix des codebooks
pertinents est non supervisé et chaque modèle de l’ensemble est alors estimé sur un code-
book comportant un nombre de centres différent.

Finalement deux nouvelles méthodes de sélection sont également proposées : la première
est une nouvelle méthode pour la sélection dynamique des EoC basée sur le concept des
Oracles (KNORA) et la deuxième repose sur le choix des sous-espaces de représenta-
tion basé sur une mesure de diversité entre les partitions obtenues dans ces sous-espaces.
Cette dernière approche permet de choisir les espaces de représentation des classificateurs
individuels indépendemment du choix de la machine d’apprentissage.

Les ensembles de classificateurs constituent une nouvelle approche pour la conception
de systèmes de classification robustes. Cette thèse apporte quelques solutions novatrices
pour tenter de faire avancer notre compréhension dans ce domaine de recherche en pleine
expansion.
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RÉSUMÉ

Les ensembles de classificateurs (EoC) permettent la mise en oeuvre de systèmes de re-
connaissance de formes robustes. Nous présentons dans cette thèse plusieurs solutions
novatrices pour tenter de solutionner trois problèmes fondamentaux reliés à la conception
des EoC : la génération des classificateurs, la sélection et la fusion.

Une nouvelle fonction de fusion (Compound Diversity Function - CDF) basée sur la prise
en compte de la performance individuelle des classificateurs et de la diversité entre pairs
de classificateurs est proposée au chapitre un pour la sélection statique des ensembles. Un
résultat important est la démonstration de l’existence d’une corrélation entre différentes
versions de CDF et la performance globale de l’ensemble. De plus, nous avons montré
que les variantes de CFD sont en général plus performantes pour la sélection statique des
ensembles de classificateurs que les mesures de diversité publiées dans la littérature.

Le deuxième chapitre présente une nouvelle fonction de fusion basée sur les matrices de
confusions "pairwise" (PFM), mieux adaptée pour la fusion des classificateurs en présence
d’un grand nombre de classes. Cette méthode transforme les étiquettes des classes géné-
rées par les classificateurs en probabilités a postériori des classes. La méthode proposée
est générale et s’applique à tous les types de classificateurs, peu importe la nature de la
sortie (étiquettes, scores, probabilités à posteriori, etc). De plus, cette méthode est bien
adaptée pour résoudre les problèmes de reconnaissance comportant un grand nombre de
classes, et une base d’apprentissage de petite taille. Nous avons montré empiriquement
que la nouvelle fonction de fusion PFM montre en général une meilleure performance que
le vote majoritaire (MAJ), et se comporte avantageusement comparée à la méthode BKS
dans plusieurs cas o le nombre de classes est très important.

Troisièmement, une nouvelle méthode est proposée pour générer des ensembles de Mo-
dèles de Markov Cachés (Hidden Markov Models - EoHMM) pour la reconnaissance des
caractères manuscrits. Plusieurs hypothèses de codebooks sont générées à partir d’une me-
sure de validité des clusters. Le choix des codebooks est non supervisé, c’est-à-dire que le
choix n’est pas basé sur la performance en généralisation des HMM mais a priori à partir
de la qualité des partitions obtenues lors de la recherche du meilleur codebook. Nous avons
observé que les modèles ainsi générés montrent une diversité d’opinions en généralisation
ce qui permet la création de EoHMM performants. La validation de la méthode proposée
sur la base de chiffres manuscrits NIST SD19 montre des résultats très encourageants.
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Le chapitre quatre porte sur la sélection dynamique des ensembles de classificateurs. En
effet, la sélection statique des ensembles de classificateurs suppose que le niveau de com-
pétence du meilleur ensemble est élevé pour tous les exemples de test à classer. Cette
remarque s’applique évidemment au choix du meilleur classificateur individuel. Une so-
lution novatrice est proposée dans ce chapitre et repose sur le concept des Oracles asso-
ciés aux données de la base de validation (KNORA). En effet, supposons une observation
appartenant à la base de validation, la définition d’un Oracle réfère aux classificateurs
individuels qui sont en mesure de classer correctement cette observation. La sélection
dynamique consiste à localiser les observations de la base de validation qui sont dans
le voisinage immédiat de l’exemple de test à classer et de constituer dynamiquement un
ensemble de classificateurs défini par tous les oracles associés aux observations faisant
parti de ce voisinage. Le principe de la méthode est simple et les résultats expérimentaux
obtenus sont très prometteurs.

La méthode des sous-espaces aléatoires (Random Subspace Method - RSS) proposée par
T.K. Ho permet la génération de pools de classificateurs diversifiés et bien adaptés pour
la création des EoC. Actuellement il n’y a pas de méthode efficace pour la sélection des
sous-espaces pertinents. Une nouvelle approche est proposée dans ce chapitre pour la sé-
lection des sous-espaces de représentation à partir d’une mesure de diversité évaluée entre
les paires de partitions. La première étape est de partitionner la base de validation en K
clusters pour chaque sous-espace de représentation. L’hypothèse que nous posons est que
la diversité entre les partitions dans les sous-espaces est reliée à la diversité d’opinions des
classificateurs spécialisés dans ces mêmes sous-espaces de représentation. Nous avons
montré expérimentalement que cette relation existe et que le choix des sous-espaces de
représentation qui montrent une grande diversité permet de générer des pools de classifi-
cateurs adaptés pour la création des EoC. Un avantage important de la méthode proposée
est que le choix des sous-espaces de représentation est indépendant du choix de la machine
d’apprentissage.

Les méthodes proposées dans les cinq chapitres ont été soumis dans des journaux spé-
cialisés et reconnus dans notre domaine de recherche (Pattern Recognition, International
Journal on Pattern Recogniton and Artificial Intelligence, Pattern Analysis and Applica-
tion et TPAMI). De plus, plusieurs communications dans les conférences internationales
ont également été présentées (GECCO2006, IJCNN2006, ICPR2006, MCS2007 et IC-
DAR2007). Les ensembles de classificateurs constituent une nouvelle approche pour la
conception de systèmes de classification robustes. Cette thèse apporte quelques solutions
novatrices pour tenter de faire avancer notre compréhension dans ce domaine de recherche
en pleine expansion.
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CHAPTER 1

INTRODUCTION

1.1 Background: Ensemble of Classifiers

Pattern recognition is a task which enables machines to recognize different patterns. In

general, patterns with known labels (or classes) are used to train agents called classifiers.

Once these classifiers have been trained, they can classify new patterns with unknown

labels into certain classes, and thus recognize those patterns. In other words, classifiers

are designed to find the relationship between pattern features and pattern labels.

There are various types of classification algorithms for classifiers, such as multi-layer per-

ceptrons (MLP), hidden markov models (HMM), k-nearest neighbors (KNN) and support

vector machines (SVM), among others. Due to the complexity of a problem, the feature

dimension, the class dimension and the number of training samples available, some clas-

sification algorithms might perform better than others. When we consider selecting an

adequate classification algorithm for a particular problem, the basic objective is twofold:

To enhance accuracy to the fullest extent possible, and to reduce classifier training time as

much as possible.

There are several ways to improve the accuracies of these classification algorithms. One

is to use more than one classifier to carry out the pattern recognition tasks, and this is

called a multiple classifier system (MCS) or an ensemble of classifiers (EoC). An MCS

or an EoC aims to enhance recognition rates by employing multiple classifiers, rather

than by improving the accuracy of a single classifier. It has been shown theoretically

and experimentally that by combining the outputs of multiple classifiers we can achieve a

better recognition rate (11; 56; 66; 77; 81; 103; 111).
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Nevertheless, to create an EoC, we are still faced with several problems: How can we

generate multiple classifiers? Then, once these classifiers have been generated, should we

use all of them or should we select a sub-group of them? If we decide to select a sub-

group, how do we go about it? Then, once the sub-group has been selected, how can we

combine the outputs of these classifiers?

These problems have been investigated in the literature, and we present the state of the art

in the next section.

1.2 State-of-the-Art of the Methodology

1.2.1 Ensemble Generation

There are several systematic methods for generating multiple classifiers which are cur-

rently popular. The idea is to use different datasets to train classifiers, so that these classi-

fiers will behave differently. This gives us multiple diverse classifiers. We describe some

basic ensemble generation methods below.

We can use different examples to train classifiers. Supposing we have a large database, for

example, if we randomly select only two-thirds of the data points to train a classifier, very

likely each classifier will have diverse training samples and thus behave differently. This

ensemble generation method is called Bagging (63).

In order to generate different datasets for multiple classifier training more efficiently, we

can also select the training samples in a more systematic manner. For example, we can set

a probability for each training sample, and we select only two-thirds of all the samples.

If a sample has a higher selection probability, then it is more likely to be selected to train

classifiers. However, once we train a classifier, we check whether or not this classifier can

correctly classify a particular sample. If a sample is correctly classified, it is assigned a

lower selection probability. By contrast, if it is wrongly classified, it is assigned a higher
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selection probability. We repeat this process for all the samples, which will have the effect

of adjusting the selection probability of each sample. In this way, we can focus on more

difficult samples. This ensemble generation method is called Boosting (31; 90).

We can also use all the samples, but only a part of their features, to train classifiers. Sup-

posing that the data have a large feature dimension, we can only use a portion of its features

to train classifiers. For example, if all the samples have 20 features, we may use differ-

ent 5 features to train each classifier. This ensemble generation method is called Random

Subspaces (49), and the size of the feature subspace is called its cardinality.

In general, once the classifiers have been generated, we need to collect the best of them in

a sub-group. We discuss the process of selection in the next section.

1.2.2 Ensemble Selection

Not all the classifiers generated will be helpful for obtaining the best pattern recognition

result. Some might have relatively low accuracy, and others might be identical and thus

not very useful. For this reason, we need to select the best classifiers from the pool and

form a sub-group of them. This selection process is called ensemble selection, because

we select certain classifiers to construct an EoC. In general, we select one ensemble for all

test patterns, which is referred to as static ensemble selection.

One way to perform static ensemble selection is to make use of the diversity among clas-

sifiers (11; 66; 80; 89). Diversity is important, because if all classifiers are the same, we

cannot improve the pattern recognition results by combining them. In other words, they

must give quite different outputs. Based on this concept, we can simply define a diversity

of classifiers and then evaluate different EoCs by measuring their diversities. Finally, we

select the EoC with the best diversity.

Another way to do this is to use the classifier combination results directly (5; 61; 89;

101). We select EoCs, combine their outputs and measure their recognition rates on an
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independent validation dataset. If a particular EoC achieves the best recognition rates on

this validation dataset, then we suppose that it will also be the best on the test dataset.

It has been demonstrated that the measure of the recognition results of EoCs is more

reliable than the measure of their diversity (63; 66; 89). However, the fact that we use

the recognition results for ensemble selection means that we must know how to combine

classifiers before we select them. The problem is that, in general, we do not know the best

way to combine these classifiers. Since classifier combination is not optimized, we doubt

that ensemble selection based on one classifier combination method will be optimal.

Another interesting approach is to measure classifier accuracy based on the features of a

sample, and select a single classifier with the best accuracy for this sample. This means

that each sample can use different classifiers. This approach is known as dynamic classifier

selection (12; 15; 14; 28; 44; 65; 107). Moreover, since only one classifier would be used

for each sample, there is no need to proceed with classifier combination.

If we perform static ensemble selection, we need to combine the outputs of these classi-

fiers. We present some known methods for classifier combination in the next section.

1.2.3 Classifier Combination

After an EoC has been selected, we need to combine the classifiers in the ensemble, and

this process is called classifier combination. Many methods can be used to combine the

outputs of classifiers (50; 56; 69; 81; 89; 92; 96; 104; 109; 111), and these are called fusion

functions. In general, there are two types of fusion function: one which only requires

the crisp class label outputs (for example, this sample belongs to class A, that sample

belongs to class B), and the other which requires the probability outputs for each class (for

example, this sample has a 90% probability of belonging to class A, and a 10% probability

of belonging to class B).
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For fusion functions which use the probability outputs for each class, we can simply com-

bine their outputs by summing the probabilities for each class from all classifiers (the SUM

rule), or we can combine their outputs by multiplying the probabilities for each class from

all classifiers (the PRODUCT rule). We can also simply choose the class label with the

maximum probability, either by referring to the maximum probability from all classifiers

(the MAX rule) or by referring to the minimum probability from all classifiers (the MIN

rule) (50; 56; 69; 81; 89; 92; 96; 104; 109; 111).

For fusion functions which use only the crisp class label outputs, the options are some-

what limited. The simplest way to combine them is to use the majority voting rule: each

classifier has a vote on a sample, and the class that obtains the most votes wins (the MAJ

rule).

Besides these simple fusion functions, there are a number of trained fusion functions that

use another independent database to make up the combination rules, such as the Behavior-

Knowledge Space (BKS), the Decision Template (DT), Naive Bayes (NB) (50; 69; 92;

104), etc. These will be discussed later in this thesis, following a short discussion on some

of the potential problems and drawbacks of the current methods for ensemble creation,

ensemble selection and classifier combination.

1.3 Problem Statement

Although there are a number of useful methods proposed in the literature for ensemble cre-

ation, ensemble selection and classifier combination, our understanding of the ensemble

remains limited. Below are some of the limitations and potential disadvantages of current

methods:

• Ensemble Generation

In general, ensemble generation methods use a part of data subset to train classifiers,

however :
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a. The Random Subspaces method requires a minimum number of features, and

is therefore only adequate for problems with high feature dimension.

b. If the number of available samples is small, then Bagging or Boosting might

encounter "the dimensional curse" for classifier training.

c. The reduction of features or training samples might not be desirable for some

complex classification algorithms.

• Ensemble Selection

In order to select the best ensemble from a classifier pool, different objective func-

tions have been proposed :

a. The use of diversity for ensemble selection does not perform well.

b. In order to use a fusion function (such as majority voting error) for ensemble

selection, we should first define it, and there is no guarantee that the fusion

function chosen will be optimal for the problem at hand.

c. The ensemble selection process is mainly static; that is, we select one ensem-

ble for all test patterns. Again, this is sub-optimal.

d. Dynamic classifier selection does not consider the use of the ensemble, which

might further boost its performance and stability.

e. In order to carry out ensemble selection, we need to train classifiers. Since not

all the classifiers trained will be used, the time spent for additional classifier

training is wasted.

f. If the size of classifier pool is large, then ensemble selection occurs in a large

search space. This is particularly time-consuming.
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• Classifier Combination

Once an ensemble has been selected, we need a fusion function to combine its clas-

sifiers :

a. Most simple fusion functions require the class probability outputs from the

classifiers, which are not adequate for classifiers with only class label outputs.

b. Most trained fusion functions will require a significant number of training

samples. This causes problems for small data.

c. Some trained fusion functions, such as BKS, can be applied only for problems

with small class dimensions.

As we can see from the problems described above, there is still much room for improve-

ment and innovation in the field of EoC. The objective of our work is to propose applicable

methods with a view resolving, at least partly, some of these problems. We remind read-

ers, however, that EoC optimization is a very complex issue. It is related to a number of

varied processes, and our contribution constitutes only part of an improved understanding

of the use of EoCs.

1.4 Objectives and Contributions

We propose three new methods for ensemble selection for different contexts, a new ensem-

ble creation scheme for HMMs and a new classifier combination method for classifiers.

Our objective is to partly resolve some of the difficulties associated with EoCs presented in

the previous section. It is important to mention that we do not assume that these methods

are the best choices for all problems, since the best method is usually problem-dependent,

given that the most adequate ensemble method often depends on the feature dimension and



8

the features of the classes and classifiers, on data size, on problem complexity and on the

choice of classification algorithm. We offer alternative ways to employ an EoC system,

rather than to achieve an optimization of all factors involved in EoC selection, which is

nearly impossible. The methods we propose make the following contributions:

• Ensemble Generation:

We propose an ensemble generation method that does not require using data subset

for HMMs :

a. Ensemble of HMM classifiers based on the Clustering Validity Index.

Besides the traditional Bagging, Boosting and Random Subspaces ensemble

creation methods, we propose a new ensemble creation method for HMMs.

In general, HMMs need sufficient samples for training to enable them to per-

form well. But the fact that these ensemble creation methods use only data

subsets could cause problems for HMM training. We thus propose a method

for creating an ensemble of HMMs which not only employs all data points

and all features, but also offers diversity among classifiers.

• Ensemble Selection:

We make three major contributions concerning ensemble selection:

a. Compound Diversity Functions for Ensemble Selection.

Our first contribution is to combine diversity and classifier accuracy for en-

semble selection. This is a more general ensemble selection method, and

is not based on any one classifier combination method. We will show that

this method has a strong theoretical basis and performs better than the tra-

ditional ensemble selection based on diversity among classifiers. Moreover,
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since we do not fix any classifier combination method for ensemble selection,

it is possible to perform fusion function selection and further optimize EoC

performance.

b. From Dynamic Classifier Selection to Dynamic Ensemble Selection.

Our second contribution is to select ensembles of classifiers dynamically. All

the methods in the literature are aimed at selecting one EoC for all samples,

but, in fact, different samples might need different EoCs so that they can be

more adequately classified. Based on this concept, we propose a new dynamic

ensemble selection method in our work, and compare it with traditional static

ensemble selection and dynamic classifier selection.

c. The Implication of Data Diversity for Classifier-free Ensemble Selection in

Random Subspaces.

Our third contribution is to select EoCs without using any classifiers. This

classifier-free method is only for use with the Random subspaces ensemble

generation method. Remember that different classifiers are generated with

all samples, but only a part of the features is used in the Random Subspaces

method. Since we generate different classifiers based on different feature sub-

sets, then, if we can select adequate feature subsets, we are actually selecting

adequate classifiers. We thus propose a method for feature subset selection

on Random Subspaces, which will also constitute a classifier-free ensemble

selection method. With this approach, we can reduce the time spent in useless

classifier training and also reduce the ensemble selection search space.

• Classifier Combination:

We also propose a transformation matrix that is applicable for all kinds of fusion

functions :
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a. Pairwise Fusion Matrix for Combining Classifiers.

As we mentioned above, there are very few fusion functions for the crisp

class label outputs. We thus present a new fusion function that can transform

crisp class label outputs into class probability outputs. Once we have obtained

the class probability outputs, we can apply many more fusion functions to

combine classifiers. This method is thus applicable for all kinds of fusion

functions. Furthermore, this method requires many fewer training samples

and can be applicable for problems with high dimensional class as well.

The proposed methods are all strongly related. They represent solutions for different types

of problems, but they are not necessarily mutually exclusive. For example, dynamic en-

semble selection can be applied with the pairwise fusion matrix. Likewise, compound

diversity functions can be used on ensembles of HMM classifiers.

1.5 Organization of the Thesis

This thesis is organized as follows:

a. Compound Diversity Functions for Ensemble Selection

A new ensemble selection scheme is presented in chapter 2. It has been submitted

to the International Journal of Pattern Recognition and Artificial Intelligence, and

was presented at the International Joint Conference on Neural Networks (IJCNN

2006), along with experiments measuring the correlations between CDF and en-

semble accuracy, and at the International Conference on Pattern Recognition (ICPR

2006), along with experiments focusing on ensemble performance comparison. In

this work, we propose combining diversity and classifier accuracy for ensemble se-

lection.

b. Pairwise Fusion Matrix for Combining Classifiers

We introduce a new approach for combining classifiers chapter 3. It has been ac-
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cepted by Pattern Recognition, vol. 40, 2007, and was presented at the International

Workshop on Multiple Classifier Systems (MCS 2007). We present here a trans-

formation method that is applicable on all kinds of fusion functions to combine

classifiers. Since PFM and CDF are very general, widely applicable and mutually

compatible, CDF has also been tested in some PFM experiments. Their combination

was presented at the Genetic and Evolutionary Computation Conference (GECCO

2006).

c. Ensemble of HMM classifiers based on the Clustering Validity Index

A new ensemble of HMM creation methods is introduced in chapter 4. It has been

submitted to the International Journal of Pattern Analysis and Application and is

currently under revision. It was also presented at the International Workshop on

Multiple Classifier Systems (MCS 2007). In this work, we present a new ensemble

of HMM classifier creation method based on various codebook sizes. We will create

ensemble of HMM classifiers, perform ensemble selection with CDF and classifier

combination with PDF, and compare the results with traditional techniques.

d. From Dynamic Classifier Selection to Dynamic Ensemble Selection

We present a new dynamic ensemble selection method, K-Nearest Oracles KNORA)

in chapter 5. The paper has been submitted to Pattern Recognition, and it was

also presented at the International Workshop on Multiple Classifier Systems (MCS

2007). In this work, we present an innovative dynamic ensemble selection method

as an alternative to static ensemble selection. The combination with PDF is com-

pared with traditional static ensemble selection methods and with dynamic classifier

selection schemes.

e. The Implication of Data Diversity for a Classifier-free Ensemble Selection in Ran-

dom Subspaces

The classifier-free ensemble selection method is presented in chapter 6. It has been
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submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence.

This is a special ensemble selection method to be used only for the Random Sub-

spaces ensemble creation method. Note that this classifier-free ensemble selection

method is not applicable on our HMM handwritten numeral recognition system. Our

purpose in presenting this work here is to demonstrate the possibility of performing

"data selection", which has never been mentioned in the literature, but will be of

great interest to develop in the future. Its combination with PDF is investigated and

compared with other ensemble selection techniques.

Most of our topics are strongly interrelated. Several of them can be applied together, and

others can serve as post-processing methods. Below is a global view of the organization

of our work (Fig. 1):

Figure 1 The map of relationship between the proposed methods. The solid lines
indicate that the methods are compatible and can be used together, and the
dash lines means that the application as post-processing is possible. The
double line between CDF and PFM indicates that both are pairwise based

Those interested in the whole EoC system can begin at chapter 2 and read through to the

end of chapter 4. These chapters address the ensemble creation, ensemble selection and

classifier combination processes, and thus offer a global view of an EoC. Note that chapter
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3 discusses some techniques described in chapter 2, and chapter 4 requires reading parts

of chapter 2 and chapter 3.

Those already familiar with EoCs may read chapter 2, chapter 3 and chapter 5, which

offer quite different and innovative approaches to ensemble selection and classifier com-

bination. The material in chapter 5 is independent of that in both chapter 2 and chapter 3.

Consequently, readers interested only in dynamic selection can go to chapter 5 directly.

Chapter 6 is geared to advanced readers who not only understand EoC, but also the Multi-

Objective Genetic Algorithm (MOGA). Those who have no background knowledge, but

are interested, might find it helpful to read K. Debs Multi-Objective Optimization using

Evolutionary Algorithms (13), because some techniques applied in our work have been

represented in this book.

Finally, we remind readers that chapter 4 describes a special ensemble method for HMMs,

and so to fully appreciate this material, it is important to have some basic knowledge of

HMMs. For those who are interested in the topic, we recommend L. R. Rabiners work,

"A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition"

(83). For those who are interested in our baseline HMM system, Alceu de Souza Britto

Jr.s thesis, "A Two-Stage HMM-Based Method for Recognizing Handwritten Numeral

Strings" (8), might be helpful. Note that the framework of chapter 4 is based on his work.



CHAPTER 2

COMPOUND DIVERSITY FUNCTIONS FOR ENSEMBLE SELECTION

An effective way to improve a classification method’s performance is to create ensembles

of classifiers. Two elements are believed to be important in constructing an ensemble: a)

the performance of each individual classifier; and b) diversity among the classifiers. Nev-

ertheless, most works based on diversity suggest that there exists only weak correlation

between classifier performance and ensemble accuracy. We propose compound diversity

functions which combine the diversities with the performance of each individual classifier,

and show that there is a strong correlation between the proposed functions and ensemble

accuracy. Calculation of the correlations with different ensemble creation methods, differ-

ent problems and different classification algorithms on 0.624 million ensembles suggests

that most compound diversity functions are better than traditional diversity measures. The

population-based Genetic Algorithm was used to search for the best ensembles on a hand-

written numerals recognition problem and to evaluate 42.24 million ensembles. The sta-

tistical results indicate that compound diversity functions perform better than traditional

diversity measures, and are helpful in selecting the best ensembles.

2.1 Introduction

The purpose of pattern recognition systems is to achieve the best possible classification

performance. A number of classifiers are tested in these systems, and the most appro-

priate one is chosen for the problem at hand. Different classifiers usually make different

errors on different samples, and this means that by combining classifiers, we can arrive

at an ensemble that makes more accurate decisions (11; 56; 66; 77; 81; 103; 111). In

order to have classifiers with different errors, it is advisable to create diverse classifiers.

For this purpose, diverse classifiers are grouped together into what is known as an En-

semble of Classifiers (EoC). There are several methods for creating diverse classifiers,
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among them Random Subspaces (49), Bagging and Boosting (31; 63; 90). The Ran-

dom Subspaces method creates various classifiers by using different subsets of features to

train them. Because problems are represented in different subspaces, different classifiers

develop different borders for the classification. Bagging generates diverse classifiers by

randomly selecting subsets of samples to train classifiers. Intuitively, based on different

sample subsets, classifiers would exhibit different behaviors (See appendix 1). Boosting

uses parts of samples to train classifiers as well, but not randomly; difficult samples have

a greater probability of being selected, and easier samples have less chance of being used

for training. With this mechanism, most created classifiers will focus on hard samples and

can be more effective.

There are two levels of problems in optimizing the performance of an EoC. First, how are

classifiers selected, given a pool of different classifiers, to construct the best ensemble?

Second, given all the selected classifiers, what is the best rule for combining their outputs?

These two problems are fundamentally different, and should be solved separately to reduce

the complexity of optimization of EoCs; the former focuses on ensemble selection (5; 11;

61; 66; 89; 80; 101) and the latter on ensemble combination, i.e. the choice of fusion

functions (56; 81; 89; 96; 111). For ensemble selection, the problem can be considered

in two steps: (a) find a pertinent objective function for selecting the classifiers; and (b)

use a pertinent searching algorithm to apply this criterion. Obviously, a correct criterion

is one of the most crucial elements in selecting pertinent classifiers (11; 66; 80; 89). It is

considered that, in a good ensemble, each classifier is required to have different errors, so

that they will be corrected by the opinions of the whole group (56; 63; 66; 88; 89). This

property is regarded as the diversity of an ensemble.

Diversity is important for ensemble selection and cannot be substituted by fusion func-

tions. There are several reasons for this: First, for a large number of classifiers, fusion

functions need to take into account all classifier outputs for each evaluation (5), whereas

pairwise diversity measures can be calculated beforehand, and evaluating them is less
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time-consuming and more effective. Second, classifiers can be created and ensembles can

be trained along with diversity (30; 73). Third, we need to optimize fusion functions in or-

der to combine classifiers (56), since, without knowing the best fusion functions, it would

be premature to use them for ensemble selection. Given that different fusion functions

need to be evaluated, any pre-selected fusion function might not be optimal for the ensem-

ble selection. According to the ’no free lunch’ theorem (105; 106), it is understandable that

a search algorithm based on one fusion function might not be better than another search

algorithm based on a more common objective function. Based on these arguments, we

consider ensemble selection and ensemble combination as two different problems, each of

which should be solved separately.

Nevertheless, there is no universal definition of diversity, and therefore a number of dif-

ferent diversity measures have been proposed (1; 25; 29; 47; 49; 61; 66; 80; 101). What is

more, it has been observed that, even with so many different diversity measures, clear cor-

relations between ensemble accuracy and diversity measures cannot be found (11; 63; 66),

leading some researchers to consider diversity measures to be unnecessary for ensemble

selection (89). To summarize, the concept of diversity does help, but both theoretical and

experimental approaches showing that strong correlations between diversity measures and

ensemble accuracy are lacking. Given the challenge of using diversity for ensemble selec-

tion, we argue that the lack of correlation between ensemble accuracy and diversity does

not imply that there is no direct relationship between them, but that diversity should be

taken into account with the performance of individual classifiers. We suggest that such

compound diversity functions can give the best correlation with ensemble accuracy. Here

are the key questions that need to be addressed:

a. Diversity is important, but it has only a weak correlation with the ensemble accu-

racy. Can we combine the diversity with the classifier accuracies to achieve a higher

correlation with the ensemble accuracy?
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b. Is there any effect on such a correlation, e.g. from the number of classes or the

number of classifiers?

c. Can the diversity combined with the classifier accuracy be effective for ensemble

selection?

To answer these questions, we derive compound diversity functions by combining diver-

sities and the performances of individual classifiers, and we show that with such functions

there are strong correlations between the diversity measures and ensemble accuracy. Fur-

thermore, we demonstrate the impact on the correlation between the accuracy and the

diversity with different ensemble creation methods, with different number of classifiers

and with different number of classes. However, the problem of EoC optimization is very

complex. In addition to diversity issues, it is also related to fusion functions for classi-

fier combination and to searching algorithms for ensemble selection. The contribution of

this chapter constitutes only part of an improved understanding of the use of diversity for

ensemble selection.

The chapter is organized as follows. In the next section, we investigate the dilemma of

the lack of correlation between diversity and ensemble accuracy. In section 3, we give the

reason that why the compound diversity functions might work. In section 4, we discuss

how the number of classifiers and the number of classes might influence the correlation

between ensemble accuracy and compound diversity functions. Section 6 presents basic

diversity measures that would be tested in the experiments. Correlations with ensemble

accuracy are measured on 0.624 million ensembles in section 6. In section 7, we use the

proposed compound functions as objective functions for ensemble selection among 42.24

million ensembles. A discussion and our conclusion are contained in the final sections.
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2.2 Dilemma of the Ambiguity towards the Ensemble Accuracy

In this section, we adopt the framework established in (11) to discuss the impediment to

using the ambiguity to estimate ensemble accuracy. For readers not familiar with the work

in (11; 62), we present a short introduction here, but the original papers offer far more

details. The main point is to decompose the mean square error of an ensemble into an

ambiguity part and a non-ambiguity part, and we can find the variance terms in both the

ambiguity part and the non-ambiguity part. As a result, when we try to maximize the

ambiguity among classifiers, we will also affect the non-ambiguity part. That is the reason

that an increase in the diversity will not necessarily guarantee a decrease in the global

ensemble error.

To start, we need to introduce the concept of the bias-variance decomposition (10; 11; 18;

27; 53). Briefly speaking, attempts to reduce the bias component will cause an increase in

variance, and vice versa.

Suppose that the response variable is binary, i.e., y ∈ {0, 1}, the probability of a

sample x belonging to a class y can be P (y|x), and the classification task is to es-

timate this probability E{y|x} = P (y|x) based on a sequence of the N observation

D = {(x1, y1), (x2, y2), · · · (xN , yN)}. Assume that we have a classifier f trained with

a particular dataset D, the probability of a data point x belonging to a class predicted by

the classifier f can be written as f(x, D). To measure the effectiveness of the f(x, D) as

a predictor of the E{y|x}, we can simply calculate its mean square error (MSE) (62):

E{(f(x, D)− E{y|x})2}

= (E{f(x, D)} − E{y|x})2 + E{(f(x, D)− E{f(x, D)})2} (2.1)

or MSE{f} = bias(f)2 + var(f) (2.2)
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where E{f(x, D)} is the expectation of the classifier f(x, D) with the respect to the train-

ing set D, i.e., the average over the ensemble of the possible D. We can deduct that:

bias(f) = E{f(x, D)} − E{y|x} (2.3)

var(f) = E{(f(x, D)− E{f(x, D)})2} (2.4)

This form can be further decomposed into bias-variance-covariance (11; 101). For an

ensemble with L classifiers, the averaged bias of the ensemble members is defined as :

b̄ =
1

L

L∑
i

(E{fi(x, Di)} − E{y|x}) (2.5)

where Di is the dataset used to train the classifier fi. We note that E{fi(x, Di)} is the

average over the ensemble of the possible D, and thus all classifiers will have the same

E{f(x, D)}. We just keep the notation for the clarity and for the consistency with (11).

Then, the averaged variance of the ensemble members will be :

v̄ =
1

L

L∑
i

(E{(fi(x, Di)− E{fi(x, Di)})2}) (2.6)

and the averaged covariance of the ensemble members will be:

c̄ =
1

L(L− 1)

L∑
i

L∑
j 6=i

E{(fi(x, Di)−E{fi(x, Di)})(fj(x, Dj)−E{fj(x, Dj)})} (2.7)

If we decompose the mean square error for this ensemble of L classifiers, we get :

MSE(L) = E{(( 1

L

L∑
i

fi(x, Di))− E{y|x})2} (2.8)

= b̄2 +
1

L
v̄ +

L− 1

L
c̄ (2.9)
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To determine the link between MSE(L) and the ambiguity, which measures the amount

of variability among classifier outputs in ensembles, we need to apply ambiguity decom-

position. It has been proved (62) that, at a single data point, the quadratic error of the

ensemble fens is guaranteed to be less than or equal to average quadratic error of the indi-

vidual classifiers (62):

(fens−E{y|x})2 =
L∑
i

wi(fi(x, Di)−E{y|x})2−
L∑
i

wi(fi(x, Di)− fens)
2 (2.10)

where wi is the weight of classifier fi(x, Di) in the ensemble, and 0 ≤ wi ≤ 1. If every

classifier fi(x, Di) has the same output, then the second term is 0, and fens would be equal

to the average quadratic error of the individual classifiers. Note that the ensemble function

is a convex combination (
∑L

i wi = 1):

fens =
L∑
i

wifi(x, Di) (2.11)

For the MSE(L) of this ensemble of classifiers, suppose that every classifier has the same

weight, i.e. ∀i, wi = 1
L

, so fens is merely the average function of all individual classifiers

fens = f̄ . Consequently the ambiguity decomposition can be written as :

(f̄ − E{y|x})2 =
1

L

L∑
i

(fi(x, Di)− E{y|x})2 − 1

L

L∑
i

(fi(x, Di)− f̄)2 (2.12)

Note that its expectation is exactly eq. 2.8 and eq. 2.9

E{ 1

L

L∑
i

(fi(x, Di)−E{y|x})2− 1

L

L∑
i

(fi(x, Di)− f̄)2} = b̄2 +
1

L
v̄+

L− 1

L
c̄ (2.13)
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The ambiguity is the second term on the left-hand side in eq. 2.13, and it can be written

as (62):

E{( 1

L

L∑
i

(fi(x, Di)− f̄)2)}

=
1

L

L∑
i

E{(fi(x, Di)− E{fi(x, Di)})2} − E{(f̄ − E(f̄))2} (2.14)

= v̄ − var(f̄) = v̄ − 1

L
v̄ − L− 1

L
c̄ (2.15)

The first term of the left-side in eq. 2.13 is the sum of averaged bias and averaged variance

of classifiers:

E{ 1

L

L∑
i

(fi(x, Di)− E{y|x})2} = b̄2 + v̄ (2.16)

As stated in (11), the term v̄, the average variance, exists in both the ambiguity part and

the non-ambiguity part of MSE(L). This means that we cannot simply maximize the

ambiguity without affecting the bias component of MSE(L). When we try to maximize

the ambiguity among classifiers, we actually maximize the difference between its variance

v̄ and its covariance c̄. If the term v̄ increases, the non-ambiguity part of MSE(L) will

increase too. This is why, in general, an increase in the diversity measure will not nec-

essarily guarantee a decrease in the global ensemble error. We need to mention that the

above discussion is with respect to a single data point, but the results can generalize to the

full space (11).

2.3 Proposed Compound Diversity Functions

The above section shows that the MSE(L) can be decomposed into an ambiguity part

and a non-ambiguity part, and because the variance terms exist in both parts, there is no
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easy solution to minimize the MSE(L) by simply maximizing the ambiguity. In this

section, however, we will show that in some certain circumstances the MSE(L) can have

another form of the decomposition. Based on this decomposition, we propose an indirect

approximation of the MSE(L) with only the average errors of individual classifiers and

the diversities of classifier-pairs. The proposed approximation might thus help reduce the

MSE(L) for the ensemble selection. First, suppose that we have an ensemble with only

2 classifiers fi(Di), fj(Dj), and that classifiers fi(Di) and fj(Dj) have the recognition

rates ai and aj on a data set X , respectively, and the average error of classifier fi(Di)

is (1 − ai), and the average error of classifier fj(Dj) is (1 − aj) and the diversity dij is

measured between them. With only two classifiers, we get L = 2 in eq. 2.6 and eq. 2.7.

As a result, on any data point x ∈ X , the ambiguity between fi(x, Di) and fj(x, Dj) is

exactly half of the difference between their variance and covariance in eq. 2.15:

ambij =
1

2
(v̄ − c̄)

=
1

4
(E{(fi(x, Di)− E{fi(x, Di)})2}+ E{(fj(x, Dj)− E{fj(x, Dj)})2}

−2 · E{(fi(x, Di)− E{fi(x, Di)}) · (fj(x, Dj)− E{fj(x, Dj)})}) (2.17)

If we use L = 2 in eq. 2.9 and replace 1
2
(v̄ − c̄) by ambij , we can write MSE(2) as :

MSE(2) = b̄2 +
1

2
(v̄ + c̄) = ambij + b̄2 + c̄ (2.18)

As a result of this decomposition, there are basically two MSE(2) terms, the first being

the ambiguity of the ensemble, and the second being the sum of the averaged covariance

and the averaged bias of individual classifiers. Using the eq. 2.17, we can write the above

equation as :

MSE(2) = b̄2 + v̄ − 1

2
(v̄ − c̄) = b̄2 + v̄ − ambij (2.19)
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where ambij = 1
2
(v̄ − c̄). The point is that we have the term b̄2 + v̄ instead of b̄2 + c̄,

and one way to approximate the b̄2 + v̄ of the ensemble is through the var(f) + bias(f)2

of each individual classifier f , which is exactly the MSE of each individual classifier.

Despite this, we do not have its exact value of the var(f) + bias(f)2 of the classifier f

on each data point. However, we have the average of its zero-one loss error (18) on the

whole data set X , i.e. (1 − ai). The behavior of a zero-one loss error is much more

complicated, and up to now there has simply been no clear analog of the bias-variance-

covariance decomposition when we have a zero-one loss function (11; 18). Nevertheless,

it is still reasonable to assume that the larger the MSE of a classifier on each data point

x, the larger its average zero-one loss error on the whole data set X should be. We need

to draw some assumptions to get the reasonable approximation here. First, we want to

approximate the value of b̄2 + v̄ in the eq. 2.18, but what we know is the average error rate

(1− ai) of any given classifier fi. So suppose that :

a. For any classifier fi, (1− ai) ≈ αi(var(fi) + bias(fi)
2).

b. All classifiers in the ensemble have similar MSE(f).

The first assumption gives that (1 − ai) ≈ αi(var(fi) + bias(fi)
2) for fi and (1 − aj) ≈

αj(var(fj)+ bias(fj)
2) for fj . Still, owing to the lack of exact values for αi and αj , there

is no easy solution to the approximation of the sum of averaged bias and averaged vari-

ance. But, if the second assumption stands, i.e., these individual classifiers have a similar

MSE(f), and one could obtain a reasonable approximation of (b̄2 + v̄) by calculating

the geometric mean of individual classifier’s (var(f) + bias(f)2). As a result, the term

b̄2+ v̄ might be approximated by the error rates of individual classifiers based on the above

assumptions :

(b̄2 + v̄) ≈ γ((1− ai) · (1− aj))
1
2 (2.20)
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Now, we want to approximate the value of the ambiguity ambij in the eq. 2.18 with the

diversity measures. Again, we need to suppose that :

• The diversity measures represent approximations of the ambiguity among classi-

fiers, i.e., dij ∝ ambij , 0 ≤ dij ≤ 1.

Using the assumption, the term dij has a high correlation with ambij = 1
2
(v̄ − c̄), and the

approximation of 1
2
(v̄ − c̄) can be written as :

ambij ≈ δ · dij (2.21)

For an approximation to MSE(2), i.e. b̄2 + v̄ − ambij , given the approximation (b̄2 + v̄)

as γ · ((1− ai) · (1− aj))
1
2 , and the approximation of their diversity (v̄ − c̄) as δ · dij , we

could not achieve any exact solution due to the lack of values γ and δ. Again, we need to

make some assumptions to go further :

• The ambiguity term and the non-ambiguity term have similar weights in MSE(2).

Based on this assumption, the value MSE(2) can be approximated as the product of the

error rates of each classifier and their pairwise diversity. Given 0 ≤ dij ≤ 1, we have

0 ≤ 1− dij ≤ 1, and we define an index for the approximation of MSE(2) as :

M̃SEij ≡ (1− dij) · ((1− ai) · (1− aj))
1
2 (2.22)

For multiple classifiers, the direct approximation of MSE(L) is much more complex and

its term of covariance cannot easily be substituted. Still, we can regard multiple classifiers

as a network of classifier-pairs, and we might use the average error of each individual

classifier and the diversity between each classifier-pair for an indirect approximation of

MSE(L). Given the number of selected classifiers L ≥ 2, and we have M̃SE(L) ≈
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(
∏L

i=1(1 − ai))
1
L (

∏L
i,j=1,i6=j(1 − di,j))

1
L×(L−1) . By calculating their product, we can get

an approximation of ensemble accuracy without any consideration for the type of fusion

functions. It is important to note that different diversity measures are supposed to have

different sorts of relationships with ensemble accuracy. Some diversity measures measure

the ambiguity among classifiers, where positive correlation with ensemble accuracy is

expected; others actually measure the similarity among classifiers, where there would be a

negative correlation between them and ensemble accuracy. In the case where the diversity

measures represent the ambiguity, we combine the diversity measures with the error rates

of each individual classifier :

d̂ivamb = (
L∏

i=1

(1− ai))
1
L (

L∏
i,j=1,i6=j

(1− di,j))
1

L×(L−1) (2.23)

where ai is the correct classification rate of classifier fi, and di,j is the measured diversity

between classifier fi and classifier fj . Apparently we have L×(L−1)
2

diversity measures on

different classifier-pairs. Here, 1− ai is the error rate of classifier-i, and (1− di,j) can be

interpreted as the similarity between classifier fi and classifier fj . Thus, d̂ivamb is, in fact,

an estimation of the likelihood of a common error being made by all classifiers. In other

word, we expect d̂ivamb to have negative correlation with ensemble accuracy. However, if

the diversity measures represent the similarity, the proposed compound diversity function

should be :

d̂ivsim = (
L∏

i=1

(1− ai))
1
L (

L∏
i,j=1,i6=j

di,j)
1

L×(L−1) (2.24)

where di,j should be interpreted as the similarity between fi and fj in this case. So, d̂ivsim

ought to mean the likelihood of a common error being by all the classifiers. We expect

negative correlation between the d̂ivsim and ensemble accuracy. While it is true that these

approximations lead to strong correlations with MSE(L) for a fixed number of classifiers

L, the bottom line is that the ensemble selection will result in the minimization of L for the
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proposed compound diversity function, if L is set as a free parameter. This is substantiated

below: Suppose that there are a total of M classifiers in the pool, and we intend to select

a subset of L classifiers, L ≤ M , which can construct an EoC with the best accuracy by

a simple majority voting rule (88; 89; 92). For the pairwise diversity measures, suppose

that for all classifiers f1 ∼ fM , we measure the diversity dij on M(M−1)
2

classifier-pairs

cij, 1 ≤ i, j ≤ M, i 6= j. Intuitively, there exists at least one classifier-pair ĉij with

the maximum pairwise diversity d̂ij that is larger than or equal to any pairwise diversity

of other classifier-pairs dij , for 1 ≤ i, j ≤ M, i 6= j. As a consequence, the maximum

pairwise diversity d̂ij of classifier-pair ĉij is larger than the diversities of any other selected

L classifiers, given that 2 ≤ L ≤ M :

∀L, d̂ij ≥ E{dij} = dL (2.25)

where E{dij} is the mean of the pairwise diversities of L selected classifiers. This means

that if we use pairwise diversity as an objective function for ensemble selection, and if

the number of classifiers is set as a free parameter, it’s quite possible that we will get only

one classifier-pair. The proposed compound functions are based on diversity measured in a

pairwise manner, even taking into account the individual classifiers’ error rates, ensembles

with fewer classifiers are more likely to be favored in the ensemble selection. With regard

to this effect, functions with various number of classifiers shall be rescaled by 1:

d̂ivamb =
L

L− 1
(

L∏
i=1

(1− ai))
1
L (

L∏
i,j=1,i6=j

(1− di,j))
1

L×(L−1) (2.26)

d̂ivsim =
L

L− 1
(

L∏
i=1

(1− ai))
1
L (

L∏
i,j=1,i6=j

di,j)
1

L×(L−1) (2.27)

1In practice, when L is large, it is possible that we need to multiply a coefficient η on the compound diversity functions, so that
the lower bound of evaluated compound diversity values will not exceed machine capacity and precision.
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2.4 Concern about the Number of Classes and the Number of Classifiers

The measures d̂ivsim and d̂ivamb are supposed to have a strong correlation with the MSE

of the ensemble, but this MSE never reaches 100% correlation with ensemble error, for

several reasons: First, the ensemble error is a zero-one loss error, while the MSE of

the ensemble is based on bias, variance and covariance terms. Second, ensemble error

is influenced by the way classifiers are combined, i.e. by the choice of fusion functions,

while the MSE of the ensemble does not take fusion functions into consideration when

combining ensembles. Third, ensemble error is involved in more complicated situations

and is related to other concerns, such as the number of classes and the number of classifiers

(see the following discussion). For these reasons then, it is not hard to see why d̂ivsim and

d̂ivamb will not be perfectly correlated with the ensemble error. However, we need to know

more about what its limitations are.

Given the complexity of the problem of ensemble selection, and the various ad hoc meth-

ods for combining classifiers, it is impossible at this stage to create a flawless and complete

framework for understanding the limitations of the estimation of ensemble accuracy with

compound diversity functions. With this in mind, we set up some preconditions for a spe-

cial case study as the first step towards gaining these understandings. We suppose that

each classifier produces labels of samples as outputs, and we need to fix a fusion function

for combining classifiers in an ensemble in our case study. A number of different fusion

functions can be used (56), but for, simplicity and effectiveness (89), suppose that a sim-

ple majority voting rule (88; 89; 92) constitutes the fusion function of ensemble outputs.

Based on these conditions, we wish to know whether or not:

a. Given an ensemble of classifiers, is it possible that some classifiers make more (or

less) error without changing the ensemble outputs?
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b. Given an ensemble of classifiers, is it possible that some classifier-pairs have greater

(or less) diversity without changing the ensemble outputs?

c. If the above two concerns are true, how different can they be while maintaining the

same ensemble outputs?

It is not hard to answer the first two questions. When a simple majority voting rule is used,

a correct ensemble output depends on the proportion of classifiers correctly classifying this

sample. For a sample x in a T -class problem, suppose that the correct class is i, 1 ≤ i ≤ T .

The ensemble will give correct output only under the condition ∀j, c(i)T > c(j)T , for

1 ≤ i, j ≤ T, i 6= j, where c(i)T is the number of classifiers making a decision on class

i, and c(j)T is the number of classifiers making a wrong decision on another class j, in a

T -class problem. Under the condition ∀j, c(i)T > c(j)T , the c(i)T can decrease, and the

c(j)T can increase, and the ensemble can still give the correct output.

A similar reasoning can apply to diversities, because the change in the error rates of each

individual classifier will eventually affect the diversities among them. It is apparent that

the different error rates of individual classifiers and the different diversities among them

can achieve the same ensemble outputs by a simple majority voting rule. We know that

there is an unavoidable systematic estimation bias on the correlation measurement with

ensemble accuracy for this fusion function. In fact, since this problem results from clas-

sifiers combining by a simple majority voting rule, and not from a particular ensemble

selection criterion, the effect will occur for any objective functions on ensemble selection.

The third question depends on the nature of the pattern recognition problems and cannot

be easily estimated. It is impossible to say in what way this estimation bias will affect

the correlation between compound diversity functions and ensemble accuracy. But among

those problems are two elements resulting in this estimation bias on correlation measure-

ments between d̂ivsim / d̂ivamb and ensemble accuracy:
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a. the number of classes of the problem

b. the number of classifiers selected from the pool to construct the ensemble

As we mentioned before, an ensemble can maintain the same outputs under the condition

that ∀j, c(i)T ≥ c(j)T . For a given sample in a T -class problem, suppose that the ensemble

output remains the same. We define a margin m(T ), m(T ) ≥ 0 to be the number of correct

classifiers exceeding the threshold of being majority (31; 77; 90):

m(T ) = c(i)T − ρ(T ) (2.28)

where ρ(T ) is the threshold of the majority voting in a T -class problem. Usually ρ(T )

represents the second most popular vote (31):

ρ(T ) = max c(j)T , 1 ≤ j ≤ T, j 6= i (2.29)

Intuitively, given that the output of the ensemble remains unchanged, we still have :

c(i)T ≥ ρ(T ), 1 ≤ i ≤ T (2.30)

Given that all classifiers have choices on T classes, we can expect both c(i)T and ρ(T )

to decrease when T increases. The larger the number of classes is, the fewer votes are

obtained for each class. We describe the details in the appendix 2 for interested readers.

As we can see in Fig. 2, for a 10-class problem, class i received the majority vote, but the

margin m(10) with the second most popular voted class j is very small. This means that

the ensemble can change its decision with several different votes, therefore the measured

error rates and diversities are more accurate in estimating ensemble accuracy. By contrast,

for a 3-class problem, the margin m(3) between c(i)3 and c(j)3 is huge, which means

that more classifiers are allowed to change their individual outputs while the ensemble can
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still maintain the same outputs. In this case, the estimation will be much worse and the

correlation with ensemble accuracy will have deteriorated. The margin m(T ) is propor-

Figure 2 Distribution of 100 votes in ensembles: (a) 10-class problem; (b) 3-class
problem

tional to this estimation bias. From the eq. 2.5 in the appendix 2, we note that it is also

proportional to the number of classifiers of ensemble L. This indicates that the estimation

bias in the correlation measurement between ensemble accuracy and d̂ivsim / d̂ivamb will

become larger when more classifiers are used. This estimation bias results directly from

the nature of a zero-one loss error, and from the simple majority voting rule for combining

classifiers. No matter which objective function for ensemble selection is used, we will

encounter a loss of correlation with ensemble accuracy. The influence of the number of

classes affects not only the margin of the majority voting, but also the sensitivity of the

whole voting network as well, especially in the measure of diversity. Fig. 3.a shows that,

on an ensemble of 7-classifiers, there are two groups of classifiers with different opinions

in a 2-class problem (C1 ∼ C4, and C5 ∼ C7), and the majority voting rule needs at least

4 votes from classifiers for a decision to be made. By contrast, in a 6-class problem, the

majority could be represented with only 2 votes (Fig.3.b), we have 6 groups with different

outputs (C1 agrees with C2, but C3, C4, C5 and C6 all differ from one another). Note

that we have the same margin of 1 vote in both cases. If we consider the majority class
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Figure 3 An ensemble of 7 classifiers (C1 ∼ C7); the shadowed circles represent
the classifiers needed to achieve the majority, the solid lines represent the
pairwise diversities among classifiers, and the dashed lines represent the
required modified-pairwise-diversities so that the majority of votes could be
shifted into another class: (a) at least 4 votes needed in 2-class problems;
6 modified pairwise-diversities needed for majority-shifting; (b) at least 2
votes needed in 6-class problems; 2 modified pairwise-diversities needed for
majority-shifting. This figure serves only as an example. For details, please
see appendix 2

shifting into another class, 6 pairwise diversities have to be modified in 2-class problems

(i.e., if C4 agrees with C5, C6, C7, diversities must change between C4 and all other clas-

sifiers); and only 2 pairwise diversities need to be modified in 6-class problems (i.e., if C1

agrees with C3, diversities change only between C1 and C3, C1 and C2). This indicates

that a large number of diversity changes in low-class problems may not affect the final

output, but in high-class problems a slight change in diversity may lead to another final

decision. Thus, the measure d̂ivsim / d̂ivamb is much more sensitive to ensemble behavior

in high-class problems than it is in low-class problems.

This suggests that the implementation of proposed compound diversity functions should

be much more effective dealing with high-class problems. Moreover, the fewer classifiers

are selected in an ensemble, the more accurate the correlation between ensemble accuracy

and compound diversity functions shall be.
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2.5 Diversity Measures

Before we carried out the correlation measurements, we need to introduce some diversity

measures that would be evaluated in our experiments. The traditional concept of diversity

is composed of the terms of correct / incorrect classifier outputs. By comparing these

correct / incorrect outputs among classifiers, their respective diversity can be calculated.

In general, there are two kinds of diversity measures (See appendix 3 and 4):

a. Pairwise diversity measures

Diversity is measured between two classifiers. In the case of multiple classifiers, di-

versity is measured on all possible classifier-pairs, and global diversity is calculated

as the average of the diversities on all classifier-pairs. That is, given L classifiers,
L×(L−1)

2
pairwise diversities d12, d13, ..., d(L−1)L will be calculated, and the final di-

versity d̄ will be its average (66):

d̄ = 2×
∑

ij dij

L× (L− 1)
, i ≤ j (2.31)

This type of diversity includes: Q-statistics (1; 5), the correlation coefficient (66),

the disagreement measure (49) and the double fault (29).

b. Non-Pairwise diversity measures

There are others diversities that are not pairwise, i.e. they are not calculated by

comparing classifier-pairs, but by comparing all classifiers directly. This type of di-

versity includes: the Entropy measure (66), Kohavi-Wolpert variance (61), the mea-

surement of interrater agreement (5; 25), the measure of difficulty (47), generalized

diversity (80) and coincident failure diversity (80).

Most research suggests that neither type of diversity is capable of achieving a high degree

of correlation with ensemble accuracy, as only very weak correlation can be observed (66).

As we see in the section 4, the proposed compound diversity functions might represent



33

better correlations with the ensemble accuracy. To verify its usefulness, we carried out the

experiments of the correlation measurements in the next section.

2.6 Correlations between Diversity and Ensemble Accuracy

To make sure that the normalized compound diversity function is valid for the estimation of

ensemble accuracy, we tested it on problems extracted from UCI machine learning repos-

itory. There are several requirements for the selection of pattern recognition problems.

First, we should test three types of ensemble creation method: Random Subspaces, Bag-

ging, and Boosting. Thus the databases must have a large feature dimension for Random

Subspaces. Second, to avoid the dimensional curse during training, each database must

have sufficient samples of its feature dimension. Third, to avoid identical samples being

trained in Random Subspaces, only databases without symbolic features are used. Fourth,

to simplify the problem we do not use databases with missing features. In accordance with

the requirements listed above, we carried out our experiments on four databases selected

from the UCI data repository (See Table I).

Table I

UCI data for ensembles of classifiers

Database Classes Train Test Features Random Bagging Boosting

Subspace

Wisconsin 2 284 284 30 5 66 % 66 %

Breast-Cancer

Satellite 6 4435 2000 36 4 66 % 66 %

Image 7 210 2100 19 4 66 % 66 %

Segmentation

Letter 26 10007 9993 16 12 66 % 66 %

Recognition

For each of 4 databases, for each of 3 ensemble creation methods (Random Subspaces,

Bagging, and Boosting), and for each of 3 classification algorithms, 18 classifiers were
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generated as the pool for base classifiers. Classifiers were then selected from this pool

to construct ensembles. The three different classification algorithms used in our experi-

ments are Naive Bayesian Classifiers (NBC), Quadratic Discriminant Classifiers (QDC),

and 5-Layer Neural Network Classifiers (NNC) with Back-Propagation (19). To better un-

derstand the influence of the number of classifiers on the correlation between diversity and

ensemble accuracy, ensembles were composed from 3 ∼ 15 classifiers. In total, we eval-

uated 13 different numbers of classifiers for ensembles. All correlations are measured for

ensembles with the same number of classifiers, then the mean values of correlations from

different numbers of classifiers are calculated. To obtain the most accurate measure, 50 en-

sembles were constructed with the same number of selected classifiers for each database,

for each classification algorithm, for each ensemble method and for each different num-

ber of classifiers. We repeated this process 30 times to obtain a reliable evaluation. The

simple majority voting rule is used as the fusion function for the evaluation of the global

performances of related EoC. A total of 3× 3× 4× 13× 50× 30 = 0.702 million ensem-

bles should be evaluated. But, due to the dimensional curse, NNC did not have sufficient

samples for training on the Image Segmentation problem or on the Satellite problem for

Bagging or for Boosting. This occurred on 1 × 2 × 2 × 13 × 50 × 30 = 0.078 million

ensembles, so in total 0.702 − 0.078 = 0.624 million ensembles were evaluated in the

experiment.

We measured ensemble accuracy correlation on 10 traditional diversity measures, includ-

ing the disagreement measure (DM) (49), the double-fault (DF) (29), Kohavi-Wolpert

variance (KW) (61), the interrater agreement (INT) (25), the entropy measure (EN) (66),

the difficulty measure (DIFF) (47), generalized diversity (GD) (80), coincident failure di-

versity (CFD) (80), Q-statistics (Q) (1), and the correlation coefficient (COR) (66), as well

as on 10 respective proposed compound diversity functions (eq. 2.26 & eq. 2.27). They

are also compared with the Mean Classifier Error (ME) of individual classifiers. On all

training databases, the proportion of selected samples in Bagging and Boosting is 66%.
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For Random Subspaces, the sizes of subsets of features are decided under the condition

that each classifier created must have recognition rates more than 50% .

2.6.1 Random Subspaces

In the Table II, we show the correlations between original diversity measures and ensem-

ble accuracy, and the correlation between compound diversity functions and ensemble

accuracy. NBC, QDC, and NNC are applied on all databases, and we show their average

correlations.

First, we observe that in most cases the ME has an apparent correlation with ensemble

accuracy. Furthermore, it shows that, in general, compound diversity functions give better

results than the original diversity measures; it can also be perceived that, even though the

correlation between ME and ensemble accuracy is weak, compound diversity functions

still work well and present stronger correlations with ensemble accuracy than ME. Of all

the diversity measures, Q, COR, INT and DIFF are not stable. By contrast, DM, DF, KW,

EN, GD and CFD are quite reliable, as they always offer 43% ∼ 76% of correlation with

compound diversity functions. Note that in some cases (e.g., Wisconsin breast cancer),

their correlation with ensemble accuracy is better than the correlation between ME and

ensemble accuracy.

2.6.2 Bagging

The ensembles for the second experiment were created by Bagging. NBC and QDC are

used on all the databases. But NNC is implemented on all of them except the Image

Segmentation data and the Satellite data, given insufficient samples, because their high

feature dimension caused the dimensional curse.

In Table III, there is a clear correlation between ME and ensemble accuracy, and it is

quite strong. Of all the diversities, Q, COR, INT, and DIFF did not perform as well as
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Table II

Correlation for the Random Subspaces method between ensemble accuracy and: (a)
Mean Classifier Error; (b) the average of diversity measures; (c) the proposed compound
diversity functions. The arrows indicate the expected correlations: ↓ for −1 and ↑ for 1

Breast Satellite Image Letter

Cancer Segmentation Recognition

ME (Mean Classifier Error) (↓) -0.4447 -0.5820 -0.6147 -0.4680

Original Breast Satellite Image Letter

Diversity Measures Cancer Segmentation Recognition

disagreement measure (DM) (↑) -0.0170 0.0779 -0.1860 -0.0577

double fault (DF) (↓) -0.3916 -0.1204 -0.4725 -0.3758

Kohavi-Wolpert variance (KW) (↑) -0.0170 0.0779 -0.1860 -0.0577

interrater agreement (INT) (↓) -0.3605 -0.0791 -0.0038 -0.0283

entropy measure (EN) (↑) -0.0170 0.0779 -0.1860 -0.0577

measure of difficulty (DIFF) (↓) 0.2440 -0.1263 0.5518 0.1364

generalized diversity (GD) (↑) 0.2893 0.0819 0.3547 0.1413

coincident failure diversity (CFD) (↑) 0.2990 0.0807 0.3603 0.1526

Q-statistics (Q) (↓) -0.1705 -0.0811 0.1140 0.0460

correlation coefficient (COR) (↓) -0.3552 -0.0792 0.0120 -0.0266

Proposed Compound Breast Satellite Image Letter

Diversity Functions Cancer Segmentation Recognition

disagreement measure (DM) (↓) -0.6379 -0.4563 -0.4310 -0.4449

double fault (DF) (↓) -0.4924 -0.4731 -0.5058 -0.4916

Kohavi-Wolpert variance (KW) (↓) -0.5407 -0.5337 -0.7616 -0.5014

interrater agreement (INT) (↓) -0.2416 -0.0462 -0.1010 -0.1496

entropy measure (EN) (↓) -0.6379 -0.4563 -0.4310 -0.4449

measure of difficulty (DIFF) (↓) -0.3292 -0.2877 0.0708 -0.1200

generalized diversity (GD) (↓) -0.4551 -0.4978 -0.5951 -0.4851

coincident failure diversity (CFD) (↓) -0.4264 -0.4561 -0.5292 -0.4490

Q-statistics (Q) (↓) -0.3362 -0.2355 -0.1224 -0.4410

correlation coefficient (COR) (↓) -0.2488 -0.0468 -0.0998 -0.1498

the others. The GD and CFD results are unstable; sometimes giving good correlation

but sometimes not. DM, KW and EN are stable, though a little bit weaker than those

in Random Subspaces. Since the selected databases have high feature dimension for the

implementation of Random Subspaces, as a result, the effect of the dimensional curse

might occur for Bagging and for Boosting. KW always performed at 43% ∼ 83% on our

compound diversity function.
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Table III

Correlation for Bagging method between ensemble accuracy and: (a) Mean Classifier
Error; (b) the average of pure diversity measures; (c) the proposed compound diversity
functions. Note that the arrows indicate the expected correlations: ↓ for −1 and ↑ for 1

Breast Satellite Image Letter

Cancer Segmentation Recognition

ME (Mean Classifier Error) (↓) -0.5516 -0.5151 -0.8113 -0.5906

Original Breast Satellite Image Letter

Diversity Measures Cancer Segmentation Recognition

disagreement measure (DM) (↑) -0.2902 0.1309 -0.2306 0.1771

double fault (DF) (↓) -0.0409 -0.2131 -0.3520 -0.2603

Kohavi-Wolpert variance (KW) (↑) -0.2902 0.1309 -0.2306 0.1771

interrater agreement (INT) (↓) -0.0219 -0.1356 0.2298 -0.1340

entropy measure (EN) (↑) -0.2902 0.1309 -0.2306 0.1771

measure of difficulty (DIFF) (↓) 0.4925 -0.2024 -0.3516 0.0224

generalized diversity (GD) (↑) -0.1122 0.1313 -0.2273 0.2149

coincident failure diversity (CFD) (↑) -0.1178 0.1314 -0.2321 0.2150

Q-statistics (Q) (↓) 0.1068 -0.1283 -0.1692 0.0570

correlation coefficient (COR) (↓) -0.0058 -0.1386 -0.1686 -0.1309

Proposed Compound Breast Satellite Image Letter

Diversity Functions Cancer Segmentation Recognition

disagreement measure (DM) (↓) -0.5269 -0.3689 -0.3700 -0.5656

double fault (DF) (↓) -0.3370 -0.4798 -0.6645 -0.5663

Kohavi-Wolpert variance (KW) (↓) -0.5431 -0.4384 -0.8329 -0.6005

interrater agreement (INT) (↓) -0.2086 -0.1798 -0.0050 -0.1443

entropy measure (EN) (↓) -0.5269 -0.3689 -0.3700 -0.5656

measure of difficulty (DIFF) (↓) -0.2359 -0.3978 -0.3873 -0.3256

generalized diversity (GD) (↓) -0.3331 -0.3962 -0.6721 -0.4922

coincident failure diversity (CFD) (↓) -0.2864 -0.3672 -0.3683 -0.4702

Q-statistics (Q) (↓) -0.5094 -0.4559 -0.1190 -0.4109

correlation coefficient (COR) (↓) -0.2014 -0.1867 -0.0846 -0.1450

We note that, in general, the correlations between the diversities and ensemble accuracy

for Bagging are weaker than those for Random Subspaces. But, on high-dimension-class

problems, (e.g. letter recognition data, image segmentation), the implementation of com-

pound diversity functions is just as good for Bagging as for Random Subspaces. The

advantage of compound diversity functions over the original diversity measures can be

perceived in this case.
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2.6.3 Boosting

The ensembles were created for the third experiment by Boosting, NBC and QDC are

used on all databases, but NNC is used on all except the Image Segmentation data and the

Satellite data, because, given insufficient samples, their high feature dimension caused the

dimensional curse.

Table IV

Correlation for Boosting method between ensemble accuracy and: (a) Mean Classifier
Error; (b) the average of pure diversity measures; (c) the proposed compound diversity
functions. Note that the arrows indicate the expected correlations: ↓ for −1 and ↑ for 1

Breast Satellite Image Letter

Cancer Segmentation Recognition

ME (Mean Classifier Error) (↓) -0.4828 -0.5173 -0.3405 -0.6148

Original Breast Satellite Image Letter

Diversity Measures Cancer Segmentation Recognition

disagreement measure (DM) (↑) -0.1392 -0.2849 -0.2370 0.4086

double fault (DF) (↓) -0.0047 0.3131 0.2549 -0.3408

Kohavi-Wolpert variance (KW) (↑) -0.1392 -0.2849 -0.2370 0.4086

interrater agreement (INT) (↓) -0.0538 0.1283 -0.1497 -0.3926

entropy measure (EN) (↑) -0.1392 -0.2849 -0.2370 0.4086

measure of difficulty (DIFF) (↓) 0.3652 0.3505 0.2647 -0.1940

generalized diversity (GD) (↑) -0.0576 -0.2949 -0.2410 0.4092

coincident failure diversity (CFD) (↑) -0.0558 -0.3115 -0.2436 0.4109

Q-statistics (Q) (↓) 0.0873 0.1923 0.0471 -0.2980

correlation coefficient (COR) (↓) -0.0638 0.1293 -0.1498 -0.3912

Proposed Compound Breast Satellite Image Letter

Diversity Functions Cancer Segmentation Recognition

disagreement measure (DM) (↓) -0.5599 -0.1080 -0.0219 -0.5410

double fault (DF) (↓) -0.3878 -0.0462 0.0364 -0.5351

Kohavi-Wolpert variance (KW) (↓) -0.5487 -0.4489 -0.3708 -0.5681

interrater agreement (INT) (↓) -0.1807 0.0607 -0.0275 -0.3129

entropy measure (EN) (↓) -0.5599 -0.1080 -0.0219 -0.5410

measure of difficulty (DIFF) (↓) -0.2825 0.0729 0.0854 -0.4388

generalized diversity (GD) (↓) -0.3459 -0.2538 -0.1226 -0.5226

coincident failure diversity (CFD) (↓) -0.3182 -0.0660 -0.0008 -0.4693

Q-statistics (Q) (↓) -0.5448 -0.1134 -0.0299 -0.3180

correlation coefficient (COR) (↓) -0.1980 0.0611 -0.0272 -0.3130
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On most of the databases, there is a strong correlation between ME and ensemble accuracy

(Table IV). Interestingly, it is in Boosting that we see how the implementation of diver-

sity really matters: the correlation by the proposed compound diversity function could be

equivalent to or better than that of ME, which means that, for Boosting, the notion of diver-

sity does help to obtain a strong correlation with ensemble accuracy. Nevertheless, we also

perceive that the correlations between the diversities and ensemble accuracy are weaker

for Boosting than those for Bagging and for Random Subspaces for low-dimension-class

problems. But, when the number of classes is large (e.g. letter recognition data), the

correlation on Boosting can be as good as that on Bagging, and the notion of diversity is

quite well with compound diversity functions. In high-class-problems, the useful diversity

measures appear to be DM, DF, KW, EN, DIFF, GD and CFD. They offer correlations

between 46% ∼ 56%.

2.6.4 Discussion on the Correlation between Diversity and Ensemble Accuracy

In all three ensemble creation methods, we first note that the proposed compound diversity

functions correlate much stronger with the ensemble accuracy than the traditional diver-

sity measures. Second, comparison of the various ensemble creation methods suggests

that, in Random Subspaces, the proposed compound diversity functions generally have

the strongest correlations with ensemble accuracy, better than in Bagging or in Boosting.

Nevertheless, considering the correlation with ensemble accuracy, compound diversity

functions could perform better than ME in Boosting. This suggests that the issue of en-

semble diversity is crucial in Boosting.

It is certain that the number of classifiers has an impact on the correlation between com-

pound diversity functions and ensemble accuracy. We found the strongest correlation with

ensemble accuracy on the minimum number of classifiers, i.e. when ensembles were con-

structed with only 3 classifiers. But this correlation could decrease to nearly 0 when the

number of classifiers is close to the total number of classifiers available in the pool, as we
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explained in the section 5. A typical example is shown in Fig. 4, and this tendency is

observed on all our experimental problems. This is the reason why the measured average

correlation is not too significant compared with the ME.

2.7 Ensemble Selection and Diversity as Objective Function

Even though the experiment shows that the compound diversity functions are strongly cor-

related with ensemble accuracy, it is important to show that such functions can be used as

objective functions for ensemble selection. Thus we carried out a number of experiments

using different diversities as objective functions for ensemble selection. These objective

functions are evaluated by genetic algorithm (GA) searching. We used a GA because the

complexity of population based searching algorithms can be flexibly adjusted depending

on the size of the population and the number of the generations to proceed. Moreover,

because the algorithm returns population of the best combination, it can be potentially

exploited to prevent generalization problems (89). We tested 20 different diversities, in-

cluding 10 compound diversity functions and 10 original diversity measures. Besides these

20 different objective functions, we also used the Mean Classifier Error (ME) and the error

of ensembles applying the majority voting (MVE). We then compared their effectiveness

as objective functions for the creation of the EoC.

2.7.1 Experimental Protocol for Ensemble Selection

We carried out experiments on a 10-class handwritten-numeral problem. The data was ex-

tracted from NISTSD19, essentially as in (99), based on the ensembles of KNNs gener-

ated by the Random Subspaces method. We used nearest neighbor classifiers (K = 1) for

KNN, each KNN classifier having a different feature subset of 32 features extracted from

the total of 132 features. Four databases were used: the training set with 5000 samples

(hsf_{0 − 3}) was used to create 100 KNN in Random Subspaces, and the optimization

set containing 10000 samples (hsf_{0 − 3}) was used for GA searching. To avoid over-

fitting during GA searching, the validation set containing 10000 samples (hsf_{0 − 3})
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Figure 4 The correlations between the CDFs and the accuracy on the letter recognition
problem extracted from the UCI machine learning database with the Random
subspaces as the ensemble creation method. We can observe that the larger
the ensemble size, the lower the correlation
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was used to select the best solution from the current population according to the defined

objective function, and then to store it in a separate archive after each generation. Using

the best solution from this archive, the test set containing 60089 samples (hsf_{7}) was

used to evaluate the accuracies of EoC. We used GA as the searching algorithm, with 128

individuals in the population and with 500 generations, which means 64, 000 ensembles

were evaluated in each experiment. The mutation probability is 0.01. With 22 different

objective functions (Mean Classifier Error (ME), Majority Voting Error (MVE), 10 orig-

inal diversity measures, and 10 compound diversity functions) and 30 replications, 42.24

million ensembles were searched and evaluated. A threshold of 3 classifiers was applied

as the minimum number of classifiers for EoC during the whole searching process. Exper-

imental results are reported in Table V.

Figure 5 The recognition rates achieved by EoCs selected by original diversity
measures, compared with the Mean Classifier Error (ME), Majority Voting
Error (MVE), and the ensemble of all (100) KNN classifiers
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Figure 6 The recognition rates achieved by EoCs selected by compound diversity
functions, compared with the Mean Classifier Error (ME), Majority Voting
Error (MVE), and the ensemble of all (100) KNN classifiers

Table V

The recognition rates of the ensembles selected by different objective functions,
including traditional diversity measures and compound diversity functions (CDF), on

NIST SD19 handwritten numerals

100 KNN ME MVE
96.28 ± 0.00 % 94.18 ± 0.00 % 96.45 ± 0.05 %

DM KW EN GD CFD
91.56 ± 0.46 % 95.72 ± 0.00 % 90.04 ± 0.21 % 93.26 ± 0.25 % 93.66 ± 0.18 %

INT DIFF DF Q. COR
93.04 ± 0.11 % 96.24 ± 0.00 % 94.10 ± 0.13 % 91.96 ± 0.52 % 92.44 ± 0.37 %

CDF-DM CDF-KW CDF-EN CDF-GD CDF-CFD
96.19 ± 0.09 % 96.20 ± 0.06 % 96.18 ± 0.08 % 96.19 ± 0.05 % 96.22 ± 0.08 %

CDF-INT CDF-DIFF CDF-DF CDF-Q. CDF-COR
96.22 ± 0.09 96.23 ± 0.08 % 96.20 ± 0.10 % 96.20 ± 0.05 % 96.23 ± 0.07 %
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First, we see that the use of traditional diversity measures does not always give satisfying

performance. The results show that the selected ensembles perform poorly, most of them

are even worse than those chosen by ME. Apparently there are many outliers indicated in

the box plot (Fig. 5), which are values exceeding the distance of 1.5 interquartile range

(QU−QL) from either end of the box, which means that searching by the traditional diver-

sity measures could lead to great instability. This phenomenon is understandable, in light

of the fact that the original diversity measures were designed to optimize diversity among

classifiers, and they do not target ensemble accuracy directly. The result also confirms the

lack of correlation between most diversity measures and ensemble accuracy.

As we predicted, all pairwise diversity measures will lead to the minimum number of

classifiers, i.e., 3 classifiers in this experiment. Moreover, some non-pairwise diversity

measures will lead to 3 classifiers, since it will not be easy to find an ensemble with

greater diversity than the ensemble composed of the 3 most diverse classifiers. The only

two diversity measures that can resist the minimum-converging tendency are KW, which

always finds 17 classifiers for EoC, and DIFF with 21 classifiers. DIFF performs rela-

tively well in this case, as had been shown in (92). It seems that DIFF, the minimization

of the variance of the proportion of correct classifiers on all samples, encourages fairly

distributed difficulty, instead of selecting the most diverse classifiers. To arrive at a fair

distribution of difficulty, a number of classifiers would be required. Even DIFF did not

have strong correlation with ensemble accuracy in our previous correlation measurement;

it does guarantee a comparable performance in this case.

By contrast, the proposed compound diversity functions are much more stable (Fig. 6).

Most EoCs selected by them are constructed by 35 ∼ 60 classifiers, which is about half

the total of 100 classifiers. Compared with the EoCs found by MVE with 19 ∼ 35 clas-

sifiers, the sizes of EoCs selected by the compound diversity functions are larger, but the

performances are quite stable. Though MVE is still clearly better with the significance

p < 0.01, the differences in recognition rates with EoCs selected by MVE are usually less
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than 0.3%. This indicates that the EoCs selected by the proposed compound functions are

quite generalized and fit different fusion functions.

Finally, we point out that, among all diversity measures, the compound diversity functions

always perform better than the original diversity measures. While most of the original

diversity measures perform worse than ME, the use of the compound diversity functions

gives much better results than ME. Furthermore, all compound diversity functions achieve

similar performances; which should result from the strong correlations among most of

them.

2.8 Discussion

Previous published studies suggested that diversity is not unequivocally related to ensem-

ble accuracy, and it is our objective to demonstrate that the implementation of diversity

can help in ensemble selection. As we can see in these experiments, there are correla-

tions between the proposed compound diversity functions and ensemble accuracy. The

result also suggests that DM, KW, EN, GD and CFD are stable for all ensemble creation

methods. Performance depends strongly on the accuracy of individual classifiers, but, in

general, an equivalent or stronger correlation could be achieved with compound diversity

functions, especially with KW.

In contrast to the use of the original diversity measures, which show no strong intercor-

relation (63), these compound diversity functions do have strong intercorrelations, except

for COR, DIFF, INT, and Q. This means that most diversities have similar indication, and

so the creation of new diversity measures might not be a priority, but rather consideration

of how to use diversities for ensemble selection. With the Random Subspaces method, this

correlation is stronger than it is in either Bagging or Boosting. In general, a decrease in

correlation is observed when the number of selected classifiers increases, but this was not

the case for high-class problems, as we predicted.
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Based on GA searching, we see that the compound diversity functions apparently outper-

form the original diversity measures and the Mean Classifier Error as objective functions

for ensemble selection, and even exceed the performance of the ensemble of all 100 KNN

classifiers and reduce the number of classifiers by half. The proposed compound diversity

functions do improve the performance of EoCs, and always perform better than the respec-

tive original diversity measures, their performances being much close to those ensembles

obtained with the MVE objective function.

Recall that MVE is used both for ensemble selection and for classifier combination, and

thus it is understandable that MVE will have the best performance as the objective func-

tion. But, it is possible that when different fusion functions are used, MVE will not be

the best choice as an objective function. An ensemble combined with Decision Template

(DT), for example, might not have the best performances when it is evaluated by MVE.

The ’no free lunch’ theorem (105; 106) has also supported the idea that no search algo-

rithm will be optimal in all situations.

Given that these compound diversity functions do not take into account of any fusion func-

tions, the ensemble outputs can be further optimized using various classifier-combining

methods (56; 88; 89). This is an advantage for modular approaches to further optimize

searching algorithms and fusion functions. All the compound diversity functions worked

well for ensemble selection in our experiment, even some that had previously been mea-

sured and found to have weaker correlation with ensemble accuracy. This indicates a

strong similarity among most of the compound diversity functions in the pattern recogni-

tion problems evaluated.

The result encourages further exploration of the implementation of compound diversity

functions, and the pertinence of these functions for use with different searching algo-

rithms. Moreover, it suggests that the problem resides in finding ways to amalgamate

diversities and individual classifier errors, rather than allowing diversity measures to se-
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lect EoCs single-handedly. Another advantage of compound diversity functions is that

they can be calculated beforehand, since diversities are measured in a pairwise manner,

and error rates are measured on each classifier; thus, for time-consuming searching meth-

ods, such as GA or exhaustive searching, ensemble accuracy can be estimated quickly by

simply calculating the products of the diversity measures and individual classifier errors.

Given L classifiers and N samples on a C-class problem, the copmplexity of the CDFs is

O(L + L(L−1)
2

), the complexity of non-pairwise traditional diversity measures is O(LN),

and the complexity of the MVE is O(LNC). The CDFs thus has the lower cost for the

ensemble selection.

2.9 Conclusion

Diversity used to be regarded as useful, but not unequivocally related to ensemble accu-

racy. In this exploratory work on diversity, we show that, with the proper compound diver-

sity functions, there are strong correlations between the diversities and ensemble accuracy.

Moreover, using population-based GA searching, the compound diversity functions do im-

prove the recognition rates of the ensembles. We have drawn up some conclusion based

on our experiments:

a. Diversities and the performances of individual classifiers should be taken into ac-

count together.

b. Compound diversity functions have stronger correlations with the ensemble accu-

racy than the traditional diversity measures.

c. Compared with MVE, compound diversity functions have lower cost for the ensem-

ble selection.
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d. In general, ensembles selected by different compound diversity functions have so

far been found to have similar performances for GA searching, with the significance

p ≥ 0.1.

Given that this exploratory work has been accomplished with different ensemble creation

methods, considering different numbers of classifiers of ensembles, evaluating millions of

ensembles, but with a restricted number of classification algorithms, and in a limited num-

ber of problems, it will be advisable to carry out more experiments on ensemble selection,

with more pattern recognition problems and more classification methods. The problems

associated with optimizing ensembles include not only diversity, but also searching algo-

rithms (89) and fusion functions (56).

At the next chapter, we will test different fusion functions on ensembles selected with

the proposed compound diversity functions, compared with those selected with MVE.

To further optimize the performance of an EoC, we will propose other fusion functions.

These fusion functions are, interestingly, also based on a pairwise concept like compound

diversity functions.



CHAPTER 3

PAIRWISE FUSION MATRIX FOR COMBINING CLASSIFIERS

Various fusion functions for classifier combination have been designed to optimize the

results of ensembles of classifiers (EoC). We propose a pairwise fusion matrix (PFM)

transformation, which produce reliable probabilities for the use of classifier combination

and can be amalgamated with most existent fusion functions for combining classifiers.

The PFM requires only crisp class label outputs from classifiers, and is suitable for high-

class problems or problems with few training samples. Experimental results suggest that

the performance of a PFM can be a notch above that of the simple majority voting rule

(MAJ), and a PFM can work on problems where a Behavior Knowledge Space (BKS)

might not be applicable.

3.1 Introduction

Various fusion functions for classifier combination have been designed to facilitate a con-

sensus decision from the outputs of each individual classifier. Through experimentation,

some fusion functions have been shown to perform better than the single best classifier.

But, we have no adequate understanding of the reasons why some classifier combination

schemes are better than others (20; 56; 64; 89; 109).

An important consideration in classifier combination is that much better results can be

achieved if diverse classifiers, rather than similar classifiers, are combined. There are sev-

eral methods for creating diverse classifiers, among them Random Subspaces (49), Bag-

ging and Boosting (31; 63; 90). The Random Subspaces method creates various classifiers

by using different subsets of features to train them. Bagging generates diverse classifiers

by randomly selecting subsets of samples to train classifiers. Boosting also uses parts of

samples to train classifiers, but not randomly; in this case, difficult samples have a greater
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probability of being selected and easier samples have less chance of being used for train-

ing. To summarize, diverse classifiers are needed to optimize the performance of an EoC,

as well as an adequate fusion function for classifier combination. A number of different

combination schemes have been suggested (50; 56; 69; 81; 89; 92; 96; 104; 109; 111). In

general, two kinds of fusion functions are available: (a) Fusion functions of label outputs,

such as majority voting, Behavior Knowledge Space, Naive Bayes methods, etc.; and (b)

Fusion functions of continuous-values outputs, which require the class probabilities out-

puts from classifiers. Different from the continuous-valued fusion functions, the label

outputs fusion functions could not apply a posteriori probabilities of classes provided by

each individual classifier. In the case where only class labels are offered as outputs by

each individual classifier, then the simple majority vote rule is suggested.

To improve the performance of the fusion functions of label outputs, the Behavior-

Knowledge Space (BKS) (50) has been proposed as an interesting fusion function that

takes into account the interaction of classifiers. The method does not require any a pos-

teriori probabilities of classes provided by each individual classifier. By contrast, it es-

timates the probability of each possible class label by constructing a table with L + 1

dimensions for an ensemble of L classifiers, each dimension corresponds to the output of

each classifier, and the additional dimension is for the true labels of concerned samples.

By this means, with only the class label outputs of each classifier the BKS can estimate

the likelihood of a given sample belonging to a class. The problem of the BKS is that

it can apply only on low dimensional problems. Moreover, in order to have an accurate

probability estimation, it requires a large number of samples for the training.

On the other hand, the continuous-valued fusion functions require a posteriori probabili-

ties of classes provided by each individual classifier and thus can use simple probability

combination functions such as sum, product, maximum and minimum. Moreover, they

can also be more sophisticated classifier combination schemes than label outputs fusion

functions, such as Decision Templates (DT), Dempster-Shafer combination (DSC), Fuzzy
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Integral, or multilayer perceptrons (MLP) (50; 69; 92; 104). While it is true that these

functions deal with the problem of combining classifiers as a problem of pattern recogni-

tion and take into account the interactions from classifiers, most of them do need further

training. As insufficient training data usually lead to imperfect training, these sophisti-

cated fusion functions might perform worse than the simple fusion functions (87). It has,

in fact, been suggested that, given insufficient training samples, simple fusion functions

may outperform some trained fusion functions (87).

Herein lies the dilemma of EoCs. Given a limited number of samples, we need to take into

account the interaction among classifiers. When the number of samples is too small, most

trained fusion functions will not work well. For classifiers with crisp label outputs, this is

especially a serious problem, because the number of fusion functions for label outputs is

limited, and the BKS is suited neither to high dimensional class problem nor to ensembles

with a large number of classifiers. Therefore we note three constraints for classifier com-

bination: (a) classifiers without a posteriori probabilities of classes as outputs cannot use

continuous-valued fusion functions. (b) trainable fusion functions need a number of sam-

ples for training, otherwise they will not perform well. (c) In most cases the independence

of each classifier is the basic assumption. This assumption is, however, usually not true.

Here are the key questions that need to be addressed:

a. Can label outputs classifiers apply continuous-valued fusion functions?

b. Can a trainable fusion function perform well without a large training dataset?

c. Can we take the interaction among classifiers into account in combining classifiers?

Given the challenge of combining classifiers, we suggest that the methods for combining

classifiers can be improved by a simple transformation of an EoC into an ensemble of

classifier pairs. We propose a pairwise fusion matrix (PFM) for classifier combination.

A PFM is actually a 3-dimension confusion matrix consisting of the label outputs of any
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two classifiers and the real labels of samples. It is a method for transforming EoCs (Fig.

7) by which an ensemble of L classifiers is transformed into another ensemble of L×(L−1)
2

classifier pairs.

With the prospect of using classifier pairs, it becomes possible to transform the crisp class

label outputs into class probability outputs and thus allow the use of other fusion functions

of continuous-valued outputs. At the same time we do take into account the interaction

between classifiers in a pairwise manner. Moreover, the construction of pairwise fusion

matrix does not require as many samples needed for ensemble training as the BKS.

Figure 7 An example of pairwise confusion matrices transformation in a 6-classifier
ensemble. (a) The original ensemble with 6 classifiers; and (b) the
transformation yields to 6×5

2
= 15 classifier pairs. Note that each classifier

pair is equal to the link between two classifiers in (a)

It is important to note that the classifier combination problem is very complex, and there

are still a great many issues associated with it that we do not fully understand. It is difficult

to say whether or not a method is better if we have an insufficient theoretical framework

with which to assess it. The analysis and the method in this chapter constitute only a small

step towards a considerably improved understanding of classifier combination.

The chapter is organized as follows. In section 2, we introduce label outputs fusion func-

tions for classifier combination. The proposed pairwise confusion matrices are presented

in section 3, and we discuss its relationship with Behavior Knowledge Space (BKS) in
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section 4. Experimental results are compared in section 5. Discussion and our conclusion

are presented in the remaining sections.

3.2 Fusion Functions for Label Outputs Classifier Combination

Several fusion functions of label outputs for combining classifiers have been proposed

(20; 56; 64; 109). These directly compare the outputs from all individual classifiers in

an ensemble. Some related theoretical studies are presented in (56; 64; 109). As stated

in (64; 100), most of these fusion functions rely on the very restrictive assumption of the

independence of estimates. To address this shortcoming, other, more sophisticated strate-

gies have been proposed which use more available information in combining classifiers

(50; 69; 92; 104). We detail some popular fusion functions of label outputs in the section

below.

3.2.1 Simple Majority Voting Rule (MAJ)

This rule does not require the a posteriori outputs for each class, and each classifier gives

only one crisp class output as a vote for that class. Then, the ensemble output is assigned to

the class with the maximum number of votes among all classes. For any sample x ∈ X , for

a group of L classifiers in a T -class problem, we denote the decision of label outputs from

classifier f(i) is c(i), 1 ≤ c(i) ≤ T , and we write di,t = 1 for c(i) = t, 1 ≤ t ≤ T and zero

otherwise. Consequently, we calculate the discriminant function for class l, 1 ≤ l ≤ T as

:

g(l|x) =
L∑

i=1

di,l (3.1)

And the class is selected as the one with the maximum value of g(l|x):

k = arg
T

max
l=1

g(l|x) (3.2)
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3.2.2 Weighted Majority Voting Rule (W-MAJ)

Similar to MAJ, the Weighted Majority Voting Rule (W-MAJ) applies a voting scheme to

decide the output class. However, in this case each classifier is weighted by a different

coefficient :

g(l|x) =
L∑

i=1

bidi,l (3.3)

where bi is the coefficient for the classifier f(i), with the sum equal to 1 :

L∑
i=1

bi = 1 (3.4)

It has been suggested that if each classifier is independent from one another, than the

coefficient bi can be set as (69):

bi ∝ log
pi

1− pi

(3.5)

where pi is the classification accuracy of classifier f(i) on a training data set.

3.2.3 Naive Bayes (NB)

Among these methods, the simplest is based on the assumption that all classifiers are

mutually independent. Under this precondition, for a group of L classifiers in a T -class

problem, we can calculate the probability P (l|c(i), x) of the class label being l, 1 ≤ l ≤ T

if classifier f(i) gives the class label output c(i) on a sample x. Then we can use these
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estimated probabilities for classifying samples in the test set X :

P̃ (l|x) ∝
L∏

i=1

P (l|c(i), x) (3.6)

k = arg
T

max
l=1

P̃ (l|x) (3.7)

This is the so-called naive nayes (NB) combination (92; 109). However, it is very unlikely

that all classifiers in an ensemble will be mutually independent.

3.2.4 Behavior-Knowledge Space (BKS) and Wernecke’s method (WER)

Some authors propose constructing a complex BKS table (50) in order to have full access

to the information on classifier behavior. Given N samples and L classifiers in a T -class

problem, the ideal goal is to obtain the probability P (l|c(1), · · · , c(i), · · · , c(L), x) for the

whole data X , where l is a possible class label for a sample 1 ≤ l ≤ T , and c(i) is the

decision of classifier f(i) over the sample, with L classifiers 1 ≤ i ≤ L. Each probability

can be located in a cell of a look-up table (BKS table), and then be used by multinomial

combination, such as direct comparison of these probabilities in the BKS table, known as

the Behavior-Knowledge Space (BKS) (50), or considering a 95% confidence interval of

the probabilities in the BKS table, known as Wernecke’s method (WER) (104). For BKS,

the class is assigned by simply comparing the values in each cell in BKS table :

k = arg
T

max
l=1

P (l|c(1), · · · , c(i), · · · , c(L), x) (3.8)

In reality, however, this probability could be impossible to obtain. With L classifiers in a

T -class problem, there are T × TL different situations for this group of classifiers, and it
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is not difficult to see that the number of samples N is unlikely to be sufficient for TL+1

different situations, i.e. in general, N � TL+1. As a result, obtaining any idea of this

probability is also unlikely, and thus it is usually impossible to proceed with BKS or WER,

except on low class dimensions with a very small number of classifiers in an ensemble and

a very large number of samples. Given the strict limit on the size of the training data set,

some authors suggest that BKS tends to overfit (69), as well as being too self-assured (87).

Above all, it is remarkable that most trained fusion functions tend to explore more infor-

mation from the training set. For this reason, most classifier combination strategies need

to take the interaction between classifiers and between classes into consideration. If these

elements are ignored, as with NB, then the performance cannot be satisfactory. If these

elements are fully explored, as with BKS or WER, given the complicated behavior of

classifiers in an ensemble, especially in a high class dimension and with a large number of

classifiers, the number of samples can scarcely be sufficient, and the probabilities obtained

will usually be unreliable.

Herein lies the problem with training ensembles for combining classifiers. The fact that

an ensemble acts in an extremely large space means that we need to use a method which

is both effective and accurate. To partly resolve the problem, we propose a trained fusion

function for better classifier combination in large class dimension.

3.3 The Concept of Pairwise Fusion Matrices

3.3.1 Pairwise Fusion Matrix Transformation (PFM)

The dilemma of EoCs is that, given a limited number of samples, we need to take into

account the interaction among classifiers. Pairwise Fusion Matrix Transformation (PFM)
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makes use of pairwise estimation to solve this problem. If we only take classifier pairs

into account, we need only calculate the probability P (l|c(i), c(j), x), where c(i) and c(j)

are the decisions of classifier f(i) and classifier f(j) over a sample x respectively. For

P (l|c(i), c(j), x), there are only T × T 2 = T 3 different situations, and if the number of

samples N is large enough, i.e. N � T 3, we can obtain a reliable estimation of this

probability. This probability can be approximated by calculating PFM:

P (l|c(i), c(j), x) = n(x ∈ l, c(i), c(j))/n(c(i), c(j)) (3.9)

where n(c(i), c(j)) is the total number of samples on which classifier f(i) gives crisp out-

put c(i), and classifier f(j) gives crisp output c(j), while n(x ∈ l, c(i), c(j)) is the number

of samples the real class label of which is l, 1 ≤ l ≤ T . The probability P (l|c(i), c(j), x)

is, in fact, the concept of a 3-dimensional confusion matrix, where the decision of classi-

fier c(i), the decision of classifier c(j) and the real class label of such samples represent

each dimension.

The following is one example of a three-classifier PFM, which demonstrates the situation

where the classifiers give different decisions. Suppose for a pattern x in a 10-class prob-

lem, the decision of the first classifier is 3, that of a second classifier is 8 and that of a third

classifier is 5, i.e. c(1) = 3, c(2) = 8 and c(3) = 5. Obviously, for any class label l, PFM

will give three probabilities based on different classifier-pairs, P (l|c(1) = 3, c(2) = 8, x)

, P (l|c(1) = 3, c(3) = 5, x) , and P (l|c(2) = 8, c(3) = 5, x).

For any sample x with a class label k, PFM provides a pairwise matrix of classifier f(i)

and classifier f(j), with the probability of how likely it will be classified as class c(i) by

f(i) and as class c(j) by f(j). For any sample x classified as class l by classifier f(i),

PFM provides a partial confusion matrix between classifier f(j) and the real class labels
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of samples. All the confusion matrices of classifier f(j) can be derived quickly from any

pairwise confusion matrices concerning f(j) :

P (l|c(j), x) =
T∑

i=1

P (l|c(i), c(j), x) (3.10)

where c(i) constitutes the class label outputs of classifier f(i). In other words, it is a cube

of T 3 cells with N samples filled in; since L classifiers mean L×(L−1)
2

classifier pairs, we

can obtain L×(L−1)
2

pairwise confusion matrices (PFM).

Even though PFM is basically based on the label outputs of classifiers, it can also be

constructed based on continuous-valued outputs of classifiers, in case it is applicable. If

classifiers give the continuous class probability of each sample, PFMs can explore this

property by calculating the probability-based PFM (PPFM):

P (l|c(i), c(j), x) =
1

N

N∑
x=1

P (l|c(i), x) · P (l|c(j), x) (3.11)

where P (l|c(i), x) is the probability of a class c(i) being assigned by classifier f(i) to

sample x, the real class label of which is l, and P (l|x, c(j)) is the probability of a class

c(j) assigned by classifier f(j) to sample x whose real class label is l.

The probabilities from these pairwise confusion matrices offer several advantages over the

traditional ensemble combination strategies: (a) they do not require the class probability

outputs of each sample but only the class label outputs of each sample from individual

classifiers; (b) they transform the simple class label outputs into the class probability out-

puts; and (c) they take into account of the interaction between classifiers.
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Note that the use of pairwise confusion matrices is a transformation that is to be combined

with other fusion functions for the classifier combination. But PFM allows the use of other

fusion functions of continuous-values outputs, and does not suppose the independence of

each classifier. We show several examples of applied PFM on some fusion functions in

the next section.

3.3.2 Apply PFM on fusion functions of Continuous-values outputs

Based on these pairwise class probabilities, we can apply other different classifier combi-

nation rules. We give an example of the application of PFMs in general fusion functions

of continuous-values outputs:

a. PFM-Maximum Rule (PFM-MAX)

k = arg
T

max
l=1

L
2

max
i,j=1,i6=j

P (l|c(i), c(j), x) (3.12)

b. PFM-Minimum Rule (PFM-MIN)

k = arg
T

max
l=1

L
2

min
i,j=1,i6=j

P (l|c(i), c(j), x) (3.13)

c. PFM-Sum Rule (PFM-SUM)

k = arg
T

max
l=1

2

L× (L− 1)

L
2∑

i,j=1,i6=j

P (l|c(i), c(j), x) (3.14)
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d. PFM-Product Rule (PFM-PRO)

k = arg
T

max
l=1

L
2∏

i,j=1,i6=j

P (l|c(i), c(j), x) (3.15)

Other fusion functions, such as DT or NB, will require further training, but are applica-

ble as well. Furthermore, since the nature of pairwise confusion matrices is based on a

pairwise approach, it is very likely that the probabilities displayed in the cells of pair-

wise confusion matrices can be weighted by the classification rates of classifiers and the

pairwise diversity between classifiers. We discuss this idea in the next section.

3.3.3 Apply PFM on fusion functions of label outputs

Although one of the advantages of PFM lies on the use fusion functions of continuous-

values outputs, PFM can apply on fusion functions of label outputs as well. Given that

MAJ can outperform some fusion functions of continuous-values outputs (87), we are

interested to know if the PFM can bring about any improvement on MAJ. We define this

combination scheme as PFM-Majority Voting Rule (PFM-MAJ). This rule is similar to

the simple MAJ rule, but uses the pairwise probability P (l|c(i), c(j), x) from the classifier

pair f(i) and f(j) instead of the simple probability Pi(l|x) from a single classifier f(i)

considering class l. For any sample x ∈ X , for a group of L×(L−1)
2

classifier-pairs in a

T -class problem, we denote the decision of label outputs from classifiers f(i) and f(j) is

c(i) and c(j) respectively :

l̃ = arg
T

max
l=1

P (l|c(i), c(j), x) (3.16)
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We then denote di,j|t = 1 for l̃ = t, 1 ≤ t ≤ T and zero otherwise. Consequently, we

calculate the discriminant function for class l, 1 ≤ l ≤ T as :

g(l̂|x) =
L∑

i,j=1;i6=j

di,j|l̃ (3.17)

And the class is selected as the one with the maximum value of g(l̂|x) :

k = arg
T

max
l̂=1

g(l̂|x) (3.18)

Suppose for a pattern x in a 10-class problem classified by three classifiers with the deci-

sions c(1) = 3, c(2) = 8 and c(3) = 5. For any class label l, PFM gives the probabilities

based on classifier-pairs P (l|c(1) = 3, c(2) = 8, x) , P (l|c(1) = 3, c(3) = 5, x) , and

P (l|c(2) = 8, c(3) = 5, x). Suppose for all class label 1 ≤ l ≤ 10, P (3|c(1) = 3, c(2) =

8, x), P (3|c(1) = 3, c(3) = 5, x) and P (8|c(2) = 8, c(3) = 5, x) have the greatest proba-

bilities based on its own classifier-pairs. The class 3 has the support of the classifier-pair

c(1) = 3, c(2) = 8 and the classifier-pair c(1) = 3, c(3) = 5, and the class 8 has the

support of the classifier-pair c(2) = 8, c(3) = 5, i.e. d1,2|3 = 1, d1,3|3 = 1 and d2,3|8 = 1.

As a result, the class 3 has more votes than the class 8 and any other class labels, since

g(3|x) = 2 and g(8|x) = 1, the class 3 will be the decision of the EoC.

3.3.4 Other Alternatives for PFM

We have shown that PFM can apply on both label outputs and continuous-values fusion

functions. We also know that PFM can be constructed based on label outputs (PFM) or

probability outputs (PPFM). PFM is, in fact, a flexible transformation that can allow us
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to apply various classifier combination schemes. Moreover, thanks to its pairwise nature,

PFM can be further weighted by other factors. We give some examples of its alternatives:

a. PFM weighted by individual classifier recognition rate (PFM-IRR)

Given the probability P (l|c(i), c(j), x) from pairwise confusion matrices on an eval-

uated class k, where c(i) and c(j) are the decisions of classifier f(i) and classifier

f(j), with 1 ≤ i, j ≤ L, i 6= j and 1 ≤ l ≤ T , we can use the individual classi-

fier recognition rate (IRR) R(f(i)) and R(f(i)) of classifier f(i) and classifier f(j)

respectively to weight the probability obtained (PFM-IRR).

Ṗ (l|c(i), c(j), x) = P (l|c(i), c(j), x) ∗R(f(i)) ∗R(f(j)) (3.19)

b. PFM weighted by diversity of classifier-pair (PFM-DIV)

If the pairwise diversity div(f(i), f(j)) between classifier f(i) and classifier f(j)

is offered, we can use this property too. Note that there are two types of diversity

measures. Diversity might measure the ambiguity between classifiers f(i), f(j),

denoted divamb(f(i), f(j)), or the similarity between classifiers f(i), f(j), denoted

divsim(f(i), f(j)). According the different properties of diversity measures, we

make use of them in different ways (PFM-DIV):
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P̈ (l|c(i), c(j), x) =

P (l|c(i), c(j), x) ∗R(f(i)) ∗R(f(j)) ∗ divamb(f(i), f(j)) (3.20)

P̈ (l|c(i), c(j), x) =

P (l|c(i), c(j), x) ∗R(f(i)) ∗R(f(j)) ∗ (1− divsim(f(i), f(j))) (3.21)

c. PFM weighted by class probabilities (PFM-P)

In a case where an a posteriori probability of each class is given by classifiers, a

PFM can be weighted by this confidence value as well (PFM-P):

P̆ (l|c(i), c(j), x) = P (l|c(i), c(j), x) ∗ P (c(i)|x) ∗ P (c(j)|x) (3.22)

where P (c(i)|x) is the a posteriori probability of class c(i) that classifier f(i) as-

signs to a sample x.

In order to prove that PFMs are applicable, we need to carry out the experiments on clas-

sifier combination. But before that, we shall discuss the similarity and the difference of

PFM and BKS, which is one of the most popular fusion functions of label outputs. Since

PFM transforms a group of classifiers into another group of classifier-pairs, we need to

apply a certain fusion function on PFM so that we can compare it and understand its re-

lationship with BKS. Given that MAJ is one of the most used fusion functions of label

outputs, we decide to focus on PFM-MAJ on our discussion.
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3.4 The Relationship between BKS and PFM-MAJ

To better understand the relationship between the BKS and the PFM, we start with a sim-

plified 2-class problem. Supposing 3 classifiers fi, fj, fk are constructed for BKS, the

class lmax is selected among all classes l, 1 ≤ l ≤ L as the ensemble output on a sample x

if :

lmax = arg max
l

n(l|ci, cj, ck) (3.23)

where n(l|ci, cj, ck) is the number of samples found in the BKS table. It refers to the

number of samples with the real class l being classified as class ci, cj, ck by three classifiers

fi, fj, fk respectively.

For the PFM-MAJ, the decision is made by the outputs of three classifier pairs, lmax(ci, cj),

lmax(ci, ck) and lmax(cj, ck).

lmax(ci, cj) = arg max
l

n(l|ci, cj) (3.24)

Now, we notice the relationship between BKS and PFM-MAJ, for there is a direct rela-

tionship between n(l|ci, cj, ck) and n(l|ci, cj) :

n(l|ci, cj) = n(l|ci, cj, ck) + n(l|ci, cj, c̄k) (3.25)

where c̄k is any class outputs different from ck from the classifier fk. As a result,

lmax(ci, cj) can be written as :

lmax(ci, cj) = arg max
l

(n(l|ci, cj, ck) + n(l|ci, cj, c̄k)) (3.26)
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For any class outputs ¯lmax 6= lmax, this indicates that:

n(lmax|ci, cj, ck) + n(lmax|ci, cj, c̄k) > n( ¯lmax|ci, cj, ck) + n( ¯lmax|ci, cj, c̄k) (3.27)

The sufficient condition that guarantees lmax(ci, cj) = lmax is thus that :

n(lmax|ci, cj, ck)− n( ¯lmax|ci, cj, ck) > n( ¯lmax|ci, cj, c̄k)− n(lmax|ci, cj, c̄k) (3.28)

Note that from the BKS, we already know that :

n(lmax|ci, cj, ck) > n( ¯lmax|ci, cj, ck) (3.29)

So that the first term of the above equation is greater than 0 :

n(lmax|ci, cj, ck)− n( ¯lmax|ci, cj, ck) > 0 (3.30)

This indicates that PFM-MAJ is different from BKS, although they have a strong rela-

tionship. In some certain cases, they might produce the same results. In other cases, they

will lead to different decisions. But, we do not know whether PFM-MAJ can perform

better than BKS. For other PFM related fusion functions such as PFM-SUM, PFM-PRO,

PFM-MAX and PFM-MIN, we have even less understanding about the relationship with

BKS. We could, however, compare their performances and have a general idea on whether

it is adequate to apply PFM. For this reason, we carry out experiments on UCI Machine

Learning Repository in the next section.

3.5 Experimental Comparison of Classifier Combination Rules of Crisp Label Out-

puts

Contrary to the fusion methods of continuous-valued outputs, until now there are only

few fusion methods of crisp label outputs. The PFM is a practical concept and might be
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a good solution for the crisp label output combinaion. It has three fundamental aspects

different from other fusion functions: First, it requires only crisp label outputs and not

the continuous-valued outputs. Second, it is actually a transformation from the crisp label

outputs of classifiers to the continuos-valued outputs of classifier-pairs. Third, in general,

PFM is itself not a fusion function, it should be applied on other existing fusion functions

like SUM, Majority voting, etc.

This chapter focuses thus on the comparison of PFM and other fusion methods of crisp

label outputs, such as the Naive Bayes Combination (NB), the Behavior Knowledge Space

(BKS), the Majority Vote (MAJ) and the Weighted Majority Vote (W-MAJ). The PFM is

combined with some simple fusion functions such as SUM, MAJ, MAX, MIN and MAJ.

Note that for every fusion function, we can always carry out the PFM. Although it is

possible for us to combine PFM with other more sophisticated fusion functions, this will

require more training. At this chapter we only evaluate the PFM combined with the simple

fusion functions.

For the experiments, we think it is important to evaluate the PFM on different ensemble

creation methods, namely Random Subspaces, Bagging and Boosting, and these experi-

ments were carried out on the problems extracted from the UCI machine learning repos-

itory. We also regard it important to evaluate the PFM on a large database with a large

ensemble size, so we carried out an experiment on a 10-class handwritten numeral prob-

lem extracted from NIST SD19 with 100 classifiers. The experimental protocols and the

results are shown in the following sections.

3.5.1 Experiments on UCI Machine Learning Repository

To ensure that the PFM is useful for combining classifiers, we tested it on problems ex-

tracted from a UCI machine learning repository. There are several requirements for the

selection of pattern recognition problems. First, to avoid identical samples being trained

in Random Subspace, only databases without symbolic features are used. Second, to sim-
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plify the problem, we do not use databases with missing features. In accordance with the

requirements listed above, we carried out our experiments on 13 databases selected from

the UCI data repository (see Table VI). Among available samples, in general, 50% are

used as a training data set, and 50% are used as a test data set, except for the Image Seg-

mentation dataset, whose training data set and test data set have been defined on UCI data

repository. Of the training data set, 70% are used for classifier training and 30% are used

for validation.

Three ensemble creation methods have been used in our study: Random Subspaces, Bag-

ging and Boosting (63; 90). The Random Subspaces method creates various classifiers by

using different subsets of features to train them. Bagging generates diverse classifiers by

randomly selecting subsets of samples to train classifiers. Similar to Bagging, Boosting

uses parts of samples to train classifiers as well, but not randomly; difficult samples have

a greater probability of being selected, and easier samples have less chance of being used

for training. Ensemble-training (including BKS, NB and PFM) used the entire available

training data set. The cardinality of Random Subspace is set under the condition that all

classifiers have recognition rates more than 50%.

The three different classification algorithms used in our experiments are K-Nearest Neigh-

bors Classifiers (KNN), Parzen Windows Classifiers (PWC) and Quadratic Discriminant

Classifiers (QDC) (19). For each of 13 databases and for each of 3 classification algo-

rithms, 10 classifiers were generated as the pool of classifiers. Among these, each classi-

fier has a 50% chance of being selected from this pool to construct ensembles, ensembles

were thus constructed by different numbers of classifiers, and at least three classifiers are

required for an ensemble. As a result, all ensembles were constructed from 3 ∼ 8 classi-

fiers. 30 ensembles had been generated for each database, for each ensemble generation

method and for each classification algorithm. Note that each ensemble can have different

number of classifiers. In total, we evaluated 30× 13× 3× 3 = 3510 ensembles. We then

combined these ensembles with 10 different fusion functions.
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Table VI

UCI data for ensembles of classifiers

Database Classes Training Test Features Random Bagging Boosting
Samples Samples Subspace

Ionosphere 2 175 175 34 20 66 % 66 %
Liver-Disorders 2 172 172 6 4 66 % 66 %
Pima-Diabetes 2 384 384 8 4 66 % 66 %

Wisconsin Breast-Cancer 2 284 284 30 5 66 % 66 %
Iris 3 75 75 4 2 66 % 66 %

Wine 3 88 88 13 6 66 % 66 %
New-Thyroid 3 107 108 5 3 66 % 66 %

Vehicle 4 423 423 18 16 66 % 66 %
Satellite 6 4435 2000 36 6 66 % 66 %

Glass 7 107 107 10 8 66 % 66 %
Image Segmentation 7 210 2100 19 4 66 % 66 %

Vowel 11 495 495 10 8 66 % 66 %
Letter Recogntion 26 10000 10000 16 12 66 % 66 %

First, we see that the use of the PFM does make other continuous-valued fusion func-

tions applicable, and PFM gives comparable results with other traditional label outputs

fusion functions. Second, we also note that the best fusion function depends on the differ-

ent problems, and the BKS is not always better than PFM applied fusion functions (89).

Third, Among all the PFM applied fusion functions, we cannot figure out the best fusion

function for PFM, but all PFM-MAJ, PFM-IRR-MAJ and PFM-DIV-MAJ have stable

performances (Table VII ∼ IX).

In previous studies, the BKS has been shown to be comparatively accurate when an en-

semble of 3 classifiers is involved (31), but the BKS could be outperformed by most of

the other fusion functions when more classifiers are involved (69). In our study, the BKS

apparently performs very well in 2- and 3-class problems (Table VII ∼ IX). But when the

class dimension is larger than 6, due to huge data size and limited computer memory we

could not construct the BKS table.

Finally, if we compare the performance of the PFM-MAJ with that of the MAJ, which is

concerned one of the best fusion functions for classifiers with only crisp class label outputs
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Table VII

Comparison of recognition rates of different fusion functions with Random Subspace on
UCI machine learning problems. All numbers are in percents (%), the variances are

indicated in parenthesis. Note that 3 classification algorithms were used and only average
values are shown here

Fusion Functions MAJ NB BKS PFM PFM W
→ -MAJ -SUM -MAJ

Ionosphere 81.39 (0.09) % 81.47 (0.06) % 90.75 (-) % 83.10 (0.06) % 81.09 (0.07) % 80.46 (0.06) %
Liver-Disorders 63.90 (0.11) % 56.53 (0.24) % 81.01 (0.04) % 65.28 (0.08) % 64.96 (0.08) % 64.10 (0.06) %
Pima-Diabetes 78.94 (0.16) % 60.23 (0.60) % 83.68 (0.03) 80.34 (0.06) % 78.30 (0.05) % 79.40 (0.03) %
Breast-Cancer 93.54 (0.05) % 93.68 (0.48) % 92.14 (0.04) % 94.17 (0.03) % 93.54 (0.03) % 93.78 (0.01) %

Iris 90.06 (0.18) % 91.53 (0.08) % 88.81 (0.12) % 93.21 (0.11) 91.84 (0.17) % 91.52 (0.27) %
Wine 84.42 (0.15) % 89.96 (0.23) % 94.76 (0.13) % 90.30 (0.24) 88.82 (0.18) % 85.92 (0.31) %

New-Thyroid 95.27 (0.02) % 88.04 (0.10) % 91.80 (0.04) % 94.95 (0.01) % 93.91 (0.03) % 95.43 (0.03) %
Vehicle 68.08 (0.01) % 63.66 (0.03) % 63.87 (0.02) % 67.01 (0.01) % 68.20 (0.01) % 68.18 (0.01) %
Satellite 93.64 (-) % 94.03 (-) % - 94.37 (-) % 93.72 (-) % 93.64 (-) %

Glass 94.27 (0.50) % 76.85 (0.43) % - 95.57 (0.24) % 94.88 (0.26) % 92.99 (1.09) %
Image 75.91 (0.51) % 64.78 (2.88) - 85.31 (0.19) 82.98 (0.17) % 73.92 (1.42) %
Vowel 95.08 (0.01) % 92.35 (0.02) % - 94.85 (0.01)% 95.40 (-) % 95.11 (0.01) %
Letter 84.24 (0.04) % 90.72 (0.04) % - 91.08 (0.09) % 85.56 (0.09) % 84.78 (0.03) %

Fusion Functions PFM- PFM- PFM PFM- PFM-
→ -MIN -MAX -PROD -IRR-MAJ -DIV-MAJ

Ionosphere 79.66 (0.11) % 67.59 (0.05) % 79.76 (0.11) % 82.89 (0.02) % 82.86 (0.02) %
Liver-Disorder 64.41 (0.06) % 56.14 (0.07) % 65.13 (0.05) % 65.33 (0.04) % 65.26 (0.05) %
Pima-Diabetes 79.11 (0.02) % 74.31 (0.01) % 80.51 (0.04) % 80.40 (0.04) % 80.33 (0.03) %
Breast-Cancer 92.90 (0.03)% 87.32 (0.07) % 93.89 (0.01)% 94.20 (0.01) % 93.70 (0.02) %

Iris 89.04 (0.12) % 86.39 (0.06) % 88.96 (0.13) % 93.36 (0.11) % 92.88 (0.04) %
Wine 94.47 (0.11) % 81.47 (0.08) % 93.05 (0.13) % 90.73 (0.23) % 92.69 (0.08) %

New-Thyroid 84.87 (0.14) % 90.29 (0.04) % 85.09 (0.14) % 95.13 (0.02) % 94.61 (0.01) %
Vehicle 62.50 (0.03) % 68.27 (0.01) % 62.30 (0.03) % 67.04 (0.01) % 66.77 (0.01) %
Satellite 95.15 (-) % 91.56 (0.01) % 94.87 (-) % 94.40 (-) % 94.43 (-) %

Glass 84.98 (0.47) % 86.71 (0.15) % 85.07 (0.47) % 96.28 (0.14) % 90.01 (0.83) %
Image 91.43 (0.12) % 53.80 (1.68) % 90.85 (0.12) % 86.32 (0.16) % 87.67 (0.11) %
Vowel 90.34 (0.05) % 91.83 (0.02) % 90.48 (0.05) % 94.90 (0.01) % 93.89 (0.02) %
Letter 96.41 (0.02) % 79.87 (0.04) % 96.22 (0.02) % 91.15 (0.02) % 91.96 (0.01) %

(89), we find that in general the PFM-MAJ gives better performances than the simple MAJ

rule, and in some cases comparable with that achieved by the BKS (Table VII ∼ IX). The

advantage of the PFM-MAJ over the simple MAJ might be due to the exploration of the

interaction of classifiers from the PFM. The results are thus encouraging.

Nevertheless, the ensembles tested were constructed by randomly selected classifiers with-

out any ensemble selection procedure. To better understand the effect of fusion functions
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Table VIII

Comparison of recognition rates of different fusion functions with Bagging on UCI
machine learning problems. All numbers are in percents (%), the variances are indicated
in parenthesis. Note that 3 classification algorithms were used and only average values

are shown here

Fusion Functions MAJ NB BKS PFM PFM W
→ -MAJ -SUM -MAJ

Ionosphere 78.40 (0.04) % 77.07 (0.98) % 91.04 (-) % 79.81 (0.02) % 79.49 (0.02) % 79.20 (0.05) %
Liver-Disorders 61.22 (0.08) % 55.86 (0.02) % 80.00 (0.03) % 62.38 (0.08) % 62.17 (0.07) % 61.50 (0.06) %
Pima-Diabetes 72.88 (0.01) % 59.49 (0.01) % 80.24 (0.02) % 72.96 (0.01) % 72.82 (0.01) % 72.91 (0.01) %
Breast-Cancer 94.27 (-) % 94.36 (0.01) % 94.32 (-) % 94.53 (-) % 94.27 (-) % 94.34 (-) %

Iris 91.32 (0.02) % 92.51 (0.02) % 88.81 (0.03) % 92.09 (0.02) % 91.77 (0.02) % 91.66 (0.02) %
Wine 78.71 (0.06) % 79.41 (0.04) % 78.50 (0.06) % 80.05 (0.05) % 79.08 (0.06) % 78.86 (0.11) %

New-Thyroid 92.14 (0.01) % 89.48 (1.99) % 91.73 (0.02) % 92.33 (0.02) % 90.98 (0.02) % 92.39 (0.01) %
Vehicle 67.29 (0.01) % 65.74 (0.01) % 64.82 (0.03) % 67.01 (0.01) % 67.23 (0.01) % 67.26 (0.01) %
Satellite 93.16 (-) % 93.62 (-) % - 93.90 (-) % 93.24 (-) % 93.14 (-) %

Glass 96.50 (-) % 88.15 (-) % - 96.50 (-) % 96.45 (-) % 96.52 (0.01) %
Image 86.22 (0.03) % 87.78 (-) % - 89.02 (-) % 86.68 (-) % 88.77 (-) %
Vowel 95.69 (0.02) % 94.52 (0.01) % - 96.55 (0.02) % 96.20 (0.02) % 95.91 (0.01) %
Letter 91.19 (-) % 90.85(-) % - 92.79 (-) % 94.30 (-) % 90.87 (-) %

Fusion Functions PFM- PFM- PFM PFM- PFM-
→ -MIN -MAX -PROD -IRR-MAJ -DIV-MAJ

Ionosphere 79.55 (0.02) % 66.41 (0.92) % 79.63 (0.02) % 79.97 (0.02) % 79.79 (0.01) %
Liver-Disorder 60.76 (0.09) % 56.44 (0.05) % 63.59 (0.07) % 62.58 (0.08) % 63.15 (0.09) %
Pima-Diabetes 71.81 (0.01) % 71.03 (0.01) % 73.01 (0.01) % 73.00 (0.01) % 72.8867 %
Breast-Cancer 94.23 (0.01) % 93.48 (-) % 94.59 (-) % 94.58 (-) % 94.42 (-) %

Iris 89.60 (0.03) % 87.87 (0.03) % 89.60 (0.03) % 92.10 (0.02) % 92.18 (0.02) %
Wine 76.48 (0.10) % 64.58 (0.20) % 76.41 (0.11) % 80.01 (0.06) % 79.92 (0.05) %

New-Thyroid 90.84 (0.03) % 89.25 (0.01) % 90.88 (0.03) % 92.46 (0.02) % 92.73 (0.02) %
Vehicle 63.60 (0.02) % 66.61 (0.01) % 64.11 (0.02) % 66.96 (0.01) % 67.04 (0.01) %
Satellite 94.80 (-) % 90.03 (0.01) % 94.54 (-) % 93.94 (-) % 93.92 (-) %

Glass 94.60 (0.01) % 95.34 (-) % 94.66 (0.01) % 96.54 (-) % 96.28 (0.01) %
Image 85.14 (0.02) % 85.88 (0.01) % 85.14 (0.02) % 89.10 (-) % 89.04 (-) %
Vowel 91.84 (0.03) % 86.80 (0.03) % 91.89 (0.03) % 96.61 (0.01) % 96.38 (0.02) %
Letter 87.54 (0.02) % 93.48 (-) % 87.61 (0.02) % 92.89 (-) % 92.49 (-) %

on real problems, we must test this rule on a high-class problem with a large data set, and

we need to go through the ensemble selection procedure. We then thus detail the further

experiments in the next section.
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Table IX

Comparison of recognition rates of different fusion functions with Boosting on UCI
machine learning problems. All numbers are in percents (%), the variances are indicated
in parenthesis. Note that 3 classification algorithms were used and only average values

are shown here

Fusion Functions MAJ NB BKS PFM PFM W
→ -MAJ -SUM -MAJ

Ionosphere 62.40 (0.74) % 74.85 (0.77) % 77.53 (2.02) % 80.19 (0.01) % 79.42 (0.12) % 63.32 (2.65) %
Liver-Disorders 61.43 (0.21) % 57.22 (0.35) % 80.76 (0.05) % 64.09 (0.18) % 64.07 (0.14) % 63.46 (0.22) %
Pima-Diabetes 70.09 (0.34) % 68.59 (0.32) % 79.28 (0.09) % 71.37 (0.04) % 70.26 (0.01) % 70.17 (0.47) %
Breast-Cancer 94.91 (-) % 94.77 (-) % 94.59 (-) % 94.86 (-) % 94.88 (-) % 94.92 (-) %

Iris 93.91 (0.01) % 94.93 (0.01) % 94.19 (-) % 94.12 (0.01) % 93.96 (0.01) % 94.12 (0.03) %
Wine 81.28 (0.02) % 79.76 (0.05) % 80.61 (0.04) % 81.79 (0.02) % 81.45 (0.02) % 81.40 (0.02) %

New-Thyroid 92.51 (-) % 92.28 (-) % 92.88 (-) % 92.71 (-) % 92.71 (-) % 92.45 (-) %
Vehicle 67.29 (-) % 65.74 (0.01) % 64.82 (0.02) % 67.01 (0.01) % 67.23 (-) % 68.21 (-) %
Satellite 96.39 (-) % 96.57 (-) % - 96.66 (-) % 96.43 (-) % 96.40 (-) %

Glass 95.96 (-) % 88.18 (-) % - 95.95 (-) % 95.95 (-) % 95.96 (-) %
Image 86.33 (-) % 88.62 (-) % - 89.17 (-) % 88.76 (-) % 86.34 (-) %
Vowel 97.90 (-) % 97.00 (-) % - 97.87 (-) % 97.96 (-) % 97.91 (-) %
Letter 92.23 (-) % 93.96 (-) % - 94.70 (-) % 93.31 (-) % 92.05 (-) %

Fusion Functions PFM- PFM- PFM PFM- PFM-
→ -MIN -MAX -PROD -IRR-MAJ -DIV-MAJ

Ionosphere 78.15 (0.04) % 69.08 (0.27) % 78.27 (0.04) % 78.60 (0.04) % 77.12 (2.07) %
Liver-Disorder 62.89 (0.16) % 55.22 (0.05) % 63.89 (0.16) % 64.26 (0.18) % 64.28 (0.21) %
Pima-Diabetes 71.88 (0.04) % 69.35 (0.01) % 71.78 (0.03) % 71.56 (0.04) % 71.49 (0.04) %
Breast-Cancer 94.26 (-) % 94.28 (-) % 94.42 (-) % 94.86 (-) % 94.82 (-) %

Iris 94.19 (-) % 93.64 (0.01) % 93.64 (-) % 94.12 (0.01) % 94.55 (0.01) %
Wine 80.26 (-) % 78.86 (-) % 81.06 (-) % 81.78 (-) % 81.34 (-) %

New-Thyroid 92.00 (-) % 92.32 (0.01) % 92.00 (-) % 92.71 (-) % 92.71 (-) %
Vehicle 65.26 (0.02) % 67.71 (-) % 65.33 (0.02) % 68.10 (0.01) % 68.18 (-) %
Satellite 96.85 (-) % 95.41 (-) % 96.83 (-) % 96.67 (-) % 96.72 (-) %

Glass 95.95 (-) % 96.00 (-) % 95.95 (-) % 95.95 (-) % 95.95 (-) %
Image 87.99 (-) % 88.85 (-) % 87.87 (-) % 89.21 (-) % 89.08 (-) %
Vowel 96.35 (0.01) % 96.71 (0.01) % 96.34 (0.01) % 97.90 (-) % 97.78 (-) %
Letter 94.29 (-) % 92.00 (-) % 94.25 (-) % 94.72 (-) % 94.83 (-) %

3.5.2 Large Size and High Dimensional Ensembles: Random Subspace with KNN

Classifiers

Although experiments on the UCI Machine Learning Repository suggest that the PFM is

useful and stable for classifier combination, the results are still not reliable, for most prob-

lems on UCI Machine Learning Repository have low class-dimensions, have few samples

and have few features. Because of low class-dimensions, the problems are too simpli-
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fied and not always fit to the real world problems; because of few samples, the Bagging

and Boosting Ensemble Creation Methods cannot create diverse ensembles, and because

of few features, the Random Subspace Ensemble Creation Method is strongly limited in

its feature subspaces. It is doubtful that the experiments on the UCI Machine Learning

Repository can represent the qualities of the fusion functions in high-class problems with

large data set.

To compensate this drawback of UCI data sets, we carry out further experiments on a well-

known database, a handwritten numeral recognition problem known as NIST SD19. It

is a 10-class problem and the problem includes more than 150000 samples for the training

and the validation, 60089 samples for the test and a large number of features can be ex-

tracted from it. In our case more than 100 features were extracted from the patterns. We

detail the experiments on the sections below.

3.5.2.1 Experimental Protocol for KNN

We carried out experiments on a 10-class handwritten numeral problem. The data were

extracted from NIST SD19, essentially as in (99), based on the ensembles of KNNs gen-

erated by the Random Subspaces method. We used nearest neighbor classifiers (K = 1)

for KNN, each KNN classifier having a different feature subset of 32 features extracted

from the total of 132 features. Four databases were used: the training set with 5000 sam-

ples (hsf_{0− 3}) to create 100 KNN in Random Subspaces, we use relatively small size

of data set to better observe the impact of EoC. The optimization set containing 10000

samples (hsf_{0 − 3}) was used for genetic algorithm (GA) searching for ensemble se-

lection. To avoid overfitting during GA searching, the selection set containing 10000

samples (hsf_{0 − 3}) was used to select the best solution from the current population

according to the objective function defined, and then to store it in a separate archive af-

ter each generation. The same selection set was also used for training fusion functions,

including PFM transformation and the NB fusion function. Note that with 100 classifiers
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and 10 classes, BKS and WER would require constructing a table with 10101 cells, which

is impossible to realize. Using the best solution from this archive, the test set containing

60089 samples (hsf_{7}) was used to evaluate the EoC accuracies.

We need to address the fact that the classifiers used were generated with feature subsets

having only 32 features out of a total of 132. The weak classifiers can help us better

observe the effects of EoCs. If a classifier uses all available features and all training

samples, a much better performance can be observed (76; 74; 85). But, since this is not

the objective of this chapter, we focus on the improvement of EoCs by optimizing fusion

functions on combining classifiers. The benchmark KNN classifier uses all 132 features,

and so, with K = 1 we can have 93.34% recognition rates. The combination of all 100

KNN by simple MAJ gives 96.28% classification accuracy, and gives 96.96% by PFM-

MAJ. The possible upper limit of classification accuracy (the oracle) is defined as the ratio

of samples which are classified correctly by at least one classifier in a pool to all samples.

The oracle is 99.95% for KNN.

For evaluating classifier combinations, we first need to go through the process of ensem-

ble selection, because one of the most important requirements of EoCs is that they contain

diverse classifiers. We tested 2 kinds of different objective functions in this section. The

majority voting error (MVE) was tested because of its reputation as one of the best ob-

jective functions in selecting classifiers for ensembles (89), it evaluates directly the global

EoC performance by MAJ rule. In addition, we also tested 10 different traditional diver-

sity measures and 10 different compound diversity measures which combine the pairwise

diversity measures and individual classifier performance to estimate ensemble accuracy,

but did not use the global EoC performance.

These objective functions are evaluated by GA searching. We used GA because the com-

plexity of population-based searching algorithms can be flexibly adjusted depending on

the size of the population and the number of generations with which to proceed. More-
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over, because the algorithm returns a population of the best combinations, it can potentially

be exploited to prevent generalization problems (89). GA was set with 128 individuals in

the population and 500 generations, which means that 64000 ensembles were evaluated in

each experiment. The mutation probability is 0.01. With 11 different objective functions

(Majority Voting Error (MVE) and 10 compound diversity functions (58), including the

disagreement measure (DM) (49), the double-fault (DF) (29), Kohavi-Wolpert variance

(KW) (61), the interrater agreement (INT) (25), the entropy measure (EN) (66), the dif-

ficulty measure (DIFF) (47), generalized diversity (GD) (80), coincident failure diversity

(CFD) (80), Q-statistics (Q) (1), and the correlation coefficient (COR) (66)), and with 30

replications. A threshold of 3 classifiers was applied as the minimum number of classifiers

for an EoC during the whole searching process (Tables X). To summarize, 10 different fu-

sion functions were tested.

Table X

Mean recognition rates of ensembles selected by compound diversity functions and
combined with various fusion functions. The accuracy of the PFM-DIV-MAJ is the mean

value of the results applying 10 different diversity measures. All variances are smaller
than 0.01 %. O.F. = Objective Functions; F.F. = Fusion Functions

O.F. → MVE CFD COR DM DF DIFF EN GD INT KW Q

/ F.F. ↓

MAJ 96.45% 96.22% 96.29% 96.19% 96.20% 96.23% 96.18% 96.19% 96.22% 96.20% 96.20%

W-MAJ 96.47% 96.24% 96.25% 96.21% 96.20% 96.25% 96.22% 96.25% 96.26% 96.18% 96.24%

NB 96.27% 95.78% 95.77% 95.79% 95.76% 95.80% 95.75% 95.75% 95.81% 95.74% 95.79%

PFM-MAJ 96.94% 96.88% 96.88% 96.84% 96.82% 96.87% 96.85% 96.86% 96.87% 96.82% 96.86%

PFM-IRR-MAJ 96.94% 96.88% 96.87% 96.84% 96.82% 96.87% 96.85% 96.86% 96.87% 96.82% 96.86%

PFM-DIV-MAJ 96.95 % 96.89% 96.88% 96.86% 96.81% 96.87% 96.87% 96.87% 96.87% 96.84% 96.86

PFM-MAX 79.63% 77.56% 77.53% 78.06% 78.97% 78.28% 78.07% 77.88% 78.06% 78.17% 78.09%

PFM-MIN 78.00% 70.76% 70.28% 71.29% 71.88% 69.99% 70.66% 70.29% 70.81% 71.28% 70.64%

PFM-SUM 96.43% 96.21% 96.21% 96.17% 96.17% 96.21% 96.19% 96.21% 96.22% 96.16% 96.21%

PFM-PROD 71.04% 70.37% 69.99% 70.55% 70.90% 69.73% 70.06% 69.68% 69.97% 70.64% 69.89%

We observe that, although traditional fusion functions like the MAJ, the W-MAJ and the

NB have stable performances, the use of the PFM-MAJ, the PFM-IRR-MAJ and the PFM-
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Figure 8 The recognition rates achieved by EoCs selected by 10 compound diversity
functions and Majority Voting Error (MVE), using the simple MAJ as fusion
function

DIV-MAJ can lead to a better performance (Table X). Note that in this 10-class problem

with 100 classifiers, it is impossible to apply the BKS.

We can observe that the advantage of using the PFM-MAJ instead of the MAJ is very clear

(Fig. 8 & Fig. 9). By contrast, the PFM-MAX, the PFM-MIN and the PFM-PROD do not

bring about any improvements. This is not surprising, since the MAX, the MIN, and the

PROD rules have been regarded as sub-optimal fusion functions compared with the SUM

or the MAJ (56). Given that 100 classifiers generate 4950 classifier-pairs, an extremely

biased value of the probability from any classifier-pairs can affects the results seriously

with the PFM-MAX, the PFM-MIN or the PFM-PROD rules.
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Figure 9 The recognition rates achieved by EoCs selected by 10 compound diversity
functions and Majority Voting Error (MVE), using PFM-MAJ as fusion
function

The other fusion function that performs well and in a stable fashion is the PFM-SUM,

the results of which are close to those achieved by the simple MAJ, but not yet as good

as the PFM-MAJ. The PFM-SUM apparently outperforms the PFM-PROD in this respect

(Table X). A similar statement can be found in (96), where the authors suggest that the

SUM is to be preferred over the PROD in the case where a posteriori probabilities are not

well estimated. We thus suggest that the use of the PFM-MAJ or the PFM-SUM is more

adequate than the PFM-MAX, the PFM-MIN or the PFM-PRO.

Until recently, there have been few other fusion functions that perform better than simple

MAJ for crisp class label output classifiers. But, when PFM transformation is carried out,

and those classifier pairs from ensembles are evaluated by the PFM-MAJ, we observe an
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improvement in the recognition rates of EoCs, the results achieved by the PFM-MAJ being

a notch above those of the simple MAJ. This affirms the improvement brought about by

the PFM (See Figs. 8 and 9).

Figure 10 The rejection curve of ensemble of KNNs selected by Majority Voting Error
(MVE), with evaluated fusion functions: MAJ, W-MAJ, PFM-SUM, PFM-
MAJ, PFM-IRR-MAJ and PFM-DIV-MAJ. The accuracy of the PFM-DIV-
MAJ is the mean value of the results applying 10 different diversity measures

We select the six best fusion functions for applying the rejection mechanism. In Figure

10, we can observe that the MAJ and the W-MAJ have very similar performances, but the

PFM-MAJ, the PFM-IRR-MAJ and the PFM-DIV-MAJ apparently outperform the MAJ

and the W-MAJ. The advantage of the PFM-MAJ over the simple MAJ might be due to

the exploration of the interaction of classifiers from the PFM. Using the information from

the pairwise fusion matrix, the system can achieve more accurate results. Interestingly,

the performance of the PFM-SUM is not as good as the PFM-MAJ. This might indicate

the PFM might need more training samples to have a better estimation of the probability

if we want to improve the performance of the PFM-SUM.
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3.6 Discussion

For EoCs, the ideal is to obtain the probability P (l|c(1), · · · , c(i), · · · , c(L), x) for the

whole data set X , where l is the possible class label, and c(1), · · · , c(i), · · · , c(L) are de-

cisions of individual classifiers f(1), · · · , f(i), · · · , f(L) respectively. But, in reality, this

approach might not work owing to the limitation with respect to the number of samples.

Instead of estimating P (l|c(1), · · · , c(i), · · · , c(L), x), the proposed method deals with

the probability P (l|c(i), c(j), x) from pairwise confusion matrices on an evaluated class

l, and thus is much more applicable, while at the same time taking into account classifier

interaction.

When no class probability outputs are provided, most fusion functions, such as MAX,

MIN, SUM and PRO, cannot be applied. The few available fusion functions are the sim-

ple MAJ, W-MAJ, NB or BKS, WER. However, for high-class problems and large size

ensembles, there is no way to use BKS or WER, e.g. a 10-class problem with 100 classi-

fiers requires the construction of a table with 10101 cells. Nevertheless, with PFM, we do

not need as many samples as with BKS, PFM is a cube with 103 cells in this case, a size

which is quite a reasonable and modest.

Furthermore, we show that all kinds of fusion functions are applicable. The result is

encouraging. On the tested the UCI machine learning problems, the PFM-MAJ usually

outperforms the simple MAJ as a fusion function for combining classifiers. We also note

that the best fusion function seems to be problem-dependent, the PFM-DIV-MAJ, the

PFM-IRR-DIV, the PFM-SUM, the PFM-MAX, the PFM-MIN and the PFM-MAX can

slightly outperform the PFM-MAJ in some cases. Although we cannot figure out the best

fusion function for the PFM, this shows that the use of the PFM allows the application of

other continuous-valued fusion functions, and there will be many more choices of fusion

functions for combining classifiers with only crisp class outputs.
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To demonstrate that the advantages of PFM is not limited by the random classifier selection

on the UCI machine learning repository, we apply the ensemble selection scheme with 10

compound diversity functions (58) on the NIST SD19 database. We can observe that the

advantage of using the PFM-MAJ instead of the MAJ is very clear (Fig. 8 & Fig. 9).

The key element that makes an ensemble of classifier pairs outperform an EoC is that

the use of the PFM takes the interaction into consideration. The pairwise manner may

still be sub-optimal, but, if the class dimension is low and we have few classifiers and a

large number of samples, PFM can be upgraded to the third degree, i.e. we can obtain

the probabilities of any class label l by calculating P (l|c(i), c(j), c(h), x) based on three

classifier outputs c(i), c(j), c(h). This would require the construction of 4-dimensional

confusion matrices and allow us to interpret the interaction of three classifiers at the same

time. The use of diversity could further improve the recognition rates slightly in some

cases, but not significantly.

3.7 Conclusion

In this chapter, we propose a pairwise fusion matrix (PFM) transformation for classifier

combination. PFM has some advantages:

a. It transforms crisp class label outputs into class probability outputs.

b. It is suited to most kinds of existing fusion functions for combining classifiers.

c. It takes into account the interaction of classifiers in a pairwise manner.

d. Because of its pairwise nature, it does not need too many samples for training com-

pared with BKS or WER.

The experiment reveals that the performance of PFM is encouraging. Intuitively, the PFM

can also be used for other trained fusion functions, such as Naive Bayes or Decision Tem-
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plate (69). This will require another training, but we are interested in investigating the

potential use of PFM in improving the performance of trained fusion functions.

Another possible improvement scheme would be the use of PFM-MAJ directly as an ob-

jective function for ensemble selection. In the same way that the simple MAJ is used

for ensemble selection (i.e. MVE) and for classifier combination, one can also apply the

PFM-MAJ for both ensemble selection and classifier combination.

So far, we have already proposed a new ensemble selection scheme and a new classifier

combination method. But still, we need to look back at one of the most essential element

in an EoC, the process ensemble creation. At the next chapter, we propose a new ensemble

creation method for an ensemble of HMM classifiers. We then apply different ensemble

selection methods and classifier combination schemes, including those proposed in this

thesis, and compare their results.



CHAPTER 4

ENSEMBLE OF HMM CLASSIFIERS BASED ON THE CLUSTERING

VALIDITY INDEX FOR A HANDWRITTEN NUMERAL RECOGNIZER

A new scheme for the optimization of codebook sizes for HMMs and the generation of

HMM ensembles is proposed in this chapter. In a discrete HMM, the vector quantiza-

tion procedure and the generated codebook are associated with performance degradation.

By using a selected clustering validity index, we show that the optimization of HMM

codebook size can be selected without training HMM classifiers. Moreover, the proposed

scheme yields multiple optimized HMM classifiers, and each individual HMM is based on

a different codebook size. By using these to construct an ensemble of HMM classifiers,

this scheme can compensate for the degradation of a discrete HMM.

4.1 Introduction

Random Subspace, Bagging and Boosting are general ensemble creation methods, and

they can in most cases be applied to all kinds of classification algorithms to generate di-

verse classifiers for ensembles. However, there are some classification algorithms that

might need to use all samples and all features for training, and thus cannot use Random

Subspace, Bagging or Boosting for ensemble creation. Fortunately, there are some spe-

cialized ensemble creation methods which can be applied to these target classification

algorithms. To be successful, these specialized ensemble creation methods must take into

account the training process of the target classification algorithm, so that the classifiers

created will be diverse enough to construct an ensemble.

One of such classification algorithm is the Hidden Markov Model (HMM). An HMM is

one of the most popular classification methods for pattern sequence recognition, especially

for speech recognition and handwritten pattern recognition problems (6; 16; 83; 84; 94).

The objective of the HMM is to model a series of observable signals, and it is this ability
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that makes the HMM a better choice for recognition problems than other classification

methods. As a stochastic process, HMM is constructed with a finite number of states and

a set of transition functions between two states or over the same state (6; 83; 94). Each

state transmits some observations, according to a codebook which sets out corresponding

emission probabilities. Such observations may be either discrete symbols or continuous

signals. In a discrete HMM, a vector-quantization codebook is typically used to map the

continuous input feature vector to the code word.

To perform vector-quantization to generate the codebook of an HMM, we first need to

define the size of the codebook. An HMM codebook size optimization is, in general,

performed by constructing a number of HMM classifiers and comparing their recognition

rates on a validation data set. In other words, the process of codebook size optimization

is always problem-dependent. Moreover, given the extremely time-consuming process of

HMM training, HMM codebook size optimization remains a major problem.

There are various methods for solving the HMM codebook size optimization problem,

the difficulty being to define the "optimal" codebook. On the one hand, according to the

"no-free-lunch" theory (105; 106), no search algorithm is capable of always dominating

all others on all possible datasets. On the other hand, an optimal codebook is only optimal

relative to a few other evaluated codebooks. For these reasons, we believe that it is in

our interest to consider multiple optimal codebooks and to use them to construct an en-

semble of HMM classifiers (EoHMM), rather than to select a single, supposedly optimal,

codebook.

We note that the use of EoHMM has been emerging as a promising scheme for improving

HMM performance (3; 32; 33; 36; 34; 35; 38). This is because an EoC is known to be

capable of performing better than its best single classifier (11; 22; 63; 89). EoC classifiers

can be generated by changing the training set, the input features or the parameters and

architecture of the base classifiers(35). There are quite a few methods for creating HMM
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classifiers, based on the choice of features (33) for isolated handwritten images, and both

column HMM classifiers and row HMM classifiers can be applied to enhance performance

(8; 9). The use of various topologies, such as left-right HMM, semi-jump-in, semi-jump-

out HMM (36), and circular HMM (3) can also be applied.

Figure 11 The benchmark HMM classifiers: For any character image, we scan
the image from left to right, and obtain a sequence of columns as the
observations; we then scan this image again from top to bottom, and obtain a
sequence of rows as the observations. By this means, features are extracted
from each column and each row, a column HMM classifier and a row HMM
classifier are thus constructed for isolated handwritten numeral recognition

In our case, we want to create an EoHMM based on several codebooks. To do this, all the

codebooks must be good and diverse, i.e. the symbols (codewords) that these codebooks

present must be useful and different. The reason for this is quite simple: in order to obtain

different and accurate HMM classifiers, we should avoid those that are identical or under-

performing. The main question is, how can we select good and diverse codebook sizes

for an EoHMM? In terms of a good size for a codebook, we note that discrete symbols

in HMM are usually characterized as quantized vectors in the codebook by clustering, so
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the fitness of the codebook is directly related to the fitness of the clustering, for which

a number of validity indices have been proposed (4; 46; 45; 71; 78). This means that

codebook size can actually be optimized by using clustering validity indices.

Nevertheless, in order for codebook sizes to be diverse, the clustering validity indices used

must offer several adequate codebook sizes, and not just only a single optimal one. Be-

cause a data set usually consists of multiple levels of granularity (54; 91), if clustering

validity indices can give multiple adequate codebook sizes for HMM, and if these HMM

classifiers have diverse outputs, then it is possible to construct EoHMMs based on differ-

ent codebook sizes. This mechanism will give the local optima of a selected clustering

validity index. EoHMMs are then selected by various objective functions and combined

by different fusion functions. Since EoHMMs are constructed with multiple codebooks,

the degradation associated with a single vector quantization procedure can be improved

by multiple vector quantization procedures, and by then classifier combination methods.

To clarify, we want to verify two assumptions in this work. Our first assumption is that a

clustering validity index might have the property of being able to generate several code-

book hypotheses. The second assumption is that the codebook hypotheses generated by

one clustering validity index will contain enough diversity to construct a useful ensemble

of EoHMMs. In this case, an EoHMM is constructed not based on different feature sub-

spaces or on different samples, but on different representations in several symbol spaces.

The key questions that need to be addressed are the following:

a. What are the basic properties of the clustering validity indices used in clustering?

b. Which clustering validity index performs better in the selection of codebook sizes

for HMM?

c. Can the clustering validity index offer more than one hypothesis on HMM codebook

sizes?
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d. For HMM classifiers based on different codebook sizes selected by a clustering

validity index, is the diversity among them strong enough to yield an EoHMM which

performs well?

Figure 12 The EoHMM classification system approach includes: (a) the adequate
codebook sizes searching; (b) codebooks generation and HMM classifiers
training (c) EoHMM selection and combination. Both (a) and (b) were
carried out separately on column and row HMM classifiers

To answer these questions, we carried out a general review on clustering validity indices,

and applied the selected index for EoHMM construction. We used the HMM-based hand-
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written numeral recognizer in (8; 9), which includes the numeral-string segmentation stage

and the single-character verification stage. In this chapter, we focus on improving the veri-

fication stage to recognize the separated handwritten digits (Fig. 11). At this stage, column

and row HMM classifiers are used to enhance classification accuracy, and the sum of the

outputs from the single best column HMM and the single best row HMM constitutes the

final decision. With this system, we were able to improve verification by constructing an

EoHMM with different codebooks on both column HMM classifiers and row HMM classi-

fiers, and then carrying out ensemble selection and classifier combination. It is important

to note that HMM optimization is a very complex task, and there are still a great many

issues associated with it. The analysis and the method presented therefore constitute only

a small step towards a considerably improved understanding of HMM and EoHMM.

The chapter is organized as follows. In the next section, we introduce the basic concepts

of clustering validity indices. Section 3 details the process of generation, selection and

combination of HMM classifiers. In section 4, we report on experiments we carried out

on the NIST SD19 handwritten numeral database. A discussion and a conclusion are

presented in the final sections.

4.2 Clustering Validity Indices

In general, an HMM codebook is generated from a vector quantization procedure, and each

code word can be actually regarded as a centroid of a cluster in feature space. The fitness

of the clustering depends on a number of different factors, such as clustering methods

and the number of clusters. For an adequate HMM codebook, there should be a means

to select a better clustering. A clustering validity index is thus designed to evaluate the

clustering results, and to assign a level of fitness to these results. Three types of clustering

validity indices have been proposed in the literature, including external indices, internal

indices and relative indices (45; 78). External indices are designed to test whether or not a

data set is randomly structured; internal indices are used to evaluate the clustering results
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by comparing them with a known partition; and relative indices are designed merely to

find the best clustering results, that is, the most natural ones, regardless of sample labels.

Given the fact that we have no known partition for a codebook and we are interested in

finding natural clusters as code words for HMM, we focus on the known relative indices

in this section, present their definitions and discuss their advantages and drawbacks in

evaluating clustering. We must mention that a clustering validity index is not a clustering

algorithm in and of itself, but a measure to evaluate the results of clustering algorithms

and give an indication of a partitioning that best fits a data set. A clustering validity index

is independent of clustering algorithms and data sets.

4.2.1 R-squared (RS) index

To explain RS index, we need to explain the Sum of Squares(SS) measure used in this

index. We have three kinds of SS:

a. SSw: The sum of squares within the cluster.

Given a cluster cx consisting of n samples, with the members X1, · · · , Xn, and the

cluster center X̄ , define

SSw(x) =
n∑

j=1

(Xj − X̄)2 (4.1)

and for nc clusters, suppose there are ni samples for cluster ci, and denote Xi as the

centroid of the cluster ci, and its members as Xij , the total SSw can be written as

SSw =
nc∑
i=1

ni∑
j=1

(Xij − X̄i)
2 (4.2)

b. SSb: The sum of squares between clusters

Given a data set dx of nc cluster centroids c1, · · · , cnc, and the center of all the data
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C̄, define

SSb =
nc∑
i=1

(ci − C̄)2 (4.3)

c. SSt: The total sum of squares

SSt = SSw + SSb (4.4)

and RS (46; 45) is defined as the ratio of SSb to SSt. That is,

RS =
SSb

SSt

(4.5)

Note that SSb is a measure of difference between clusters, so that the more separated the

two clusters, the greater SSb will be. Moreover, SSw is the compact measure of a single

cluster. The smaller SSw, the more compact this cluster will be. Given the same SSw, RS

is proportional to SSb, and is the measure of distance between clusters. We can also write

:

RS =
SSt − SSw

SSt

(4.6)

Given the same SSb, RS can be regarded as a measure of compactness. To combine both

effects, RS is a measure of homogeneity between clusters. The value of RS always being

between 0 and 1. The process involves drawing the curve of RS while applying different

numbers of clusters, and finding its "knee".

Given a number of clusters nc, a single RS takes into account the compactness of all

clusters, as well as the distance between them. However, this distance measure is rough

and indirect because it is based on the distance with respect to the mean value of all

centroids. A single RS is unable to indicate how good the clustering is, but a series of



89

RS indices can. We expect to see a huge increase in RS value when the best number of

clusters ncbest is applied (Fig. 17). Nevertheless, if the data are high-dimensional, and

if some clusters are on the surface of a hyper-sphere the center of which is closed to the

mean of all data, RS might not be very sensitive to them because the SSb value is little

changed.

4.2.2 Root-Mean-Square Standard Deviation (RMSSTD) index

RMSSTD index is a measure based on sample variances and sample means. Supposing

we have nc clusters in the data, and cluster ci has ni samples, 1 ≤ i ≤ nc, then the mean

of the cluster ci is defined as :

X̄i =
1

ni

ni∑
j=1

Xj (4.7)

where Xj, 1 ≤ j ≤ ni, are samples of cluster ci. Moreover, the variance of cluster ci is

defined as :

S2
i =

1

ni − 1

ni∑
j=1

(Xj − X̄i) (4.8)

Similarly, RMSSTD (46; 45) is defined as :

RMSSTD = (

∑nc
i=1

∑ni

j=1(Xij − X̄i)∑nc
i=1 ni − 1

)
1
2 (4.9)

where ni, 1 ≤ i ≤ nc is the number of samples of cluster ci, and X̄i is the centroid of

cluster ci, Xij, 1 ≤ j ≤ ni is a sample belonging to cluster ci. From this, it is clear that

RMSSTD decreases when the number of clusters increases, because the more clusters it

has, the smaller the variance will be for each cluster.

Like RS, the best clustering can be located on the "knee" of RMSSTD curve (Fig. 16).

However, there is a more serious problem with RMSSTD, in that it does not take into
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account the distance between clusters, relying totally on SSw and the number of clusters

nc. This makes RMSSTD less likely to detect the best number of clusters.

4.2.3 Dunn’s Index

Assuming that the clustering process generates nc clusters, and that, for all clusters

c1, · · · , cnc, we define the dissimilarity of two clusters ci, cj , where 1 ≤ i, j ≤ nc, i 6= j

as :

d(ci , cj ) = min
x∈ci ,y∈cj

d(x , y) (4.10)

where x and y are any points in cluster ci and cj respectively, and d(x, y) is the distance

between x and y. We also define the diameter of a cluster ci as :

diam(ci) = max
x ,y∈ci

d(x , y) (4.11)

Then, Dunn’s index (4; 46; 45; 71; 78) is defined as :

Dunn ′s = min
i=1 ,··· ,nc

{ min
j=i+1 ,··· ,nc

(
d(ci , cj )

maxk=1 ,··· ,nc ·diam(ck)
)} (4.12)

It is clear that the larger Dunn′s index, the better the clustering results will be. The

maximum of diameter diam(ck) might be larger than the dissimilarity d(ci, cj). However,

Dunn′s index is not an statistical clustering validity index. Given three clusters ci, cj, ck,

where d(ci, cj) is defined by ci, cj and diam(ck) is defined by ck, and p(k ∈ (i∪j)) 6= 0, it

is evident that Dunn′s index considers the distribution of none of the other clusters, with

only the two following constraints:

a. For any other cluster cl, 1 ≤ l ≤ nc, l 6= k, diam(cl) ≤ diam(ck).

b. For any other cluster pairs cm, cn, 1 ≤ m, n ≤ nc, (m ∪ n) 6= (i ∪ j), d(cm, cn) ≥

d(ci, cj).
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Considering the distribution of clusters ci, cj, ck, suppose that the diam(ck) is defined by

two points kd1, kd2 in ck. Given the condition that they do not generate diameters larger

than diam(ck), then all the other points in ck can change their position. A similar situation

can be observed in ci, cj . Supposing that d(ci, cj) is defined by a point id in ci and another

point jd in cj , then none of the other points in ci, cj are considered by Dunn′s index, on the

condition that their distance is no shorter than d(ci, cj). Another disadvantage of Dunn′s

index is that, by measuring d(ci, cj) and diam(ck), it actually requires calculation of the

distance between any two data points. If the data set is large, the calculation of Dunn′s

index will be highly complex and could be very time-consuming.

4.2.4 Xie-Beni (XB) index

XB index (4; 46; 45; 78) was originally a fuzzy clustering validity index. For a fuzzy

clustering scheme, suppose we have the data set X = {xi, 1 ≤ i ≤ N}, where N is

the number of samples and the centroids vj of clusters cj, 1 ≤ j ≤ nc, where nc is the

total number of clusters. We seek to define the matrix of membership U = uij , where uij

denotes the degree of membership of the sample xi in the cluster cj . To define the XB

index, first one must define the sum of squared errors for fuzzy clustering. The sum of

squared errors is defined as

Jm(U, V ) =
N∑

i=1

nc∑
j=1

(uij)
m‖xi − vj‖2 (4.13)

where 1 ≤ m ≤ ∞. In general, we use J1 for the calculation. U is a partition matrix of

fuzzy membership U = uij , and V is the set of cluster centroids V = vi. In addition, the

minimum inter cluster distance dmin must also be defined, as
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dmin = mini,j‖vi − vj‖ (4.14)

Supposing that we have N samples on the total data, XB index can be defined as

XB =
Jm

N × (dmin)2
(4.15)

XB index is designed to measure the fitness of fuzzy clustering, but it is also suitable

for crisp clustering. The XB index has been mathematically justified in (108). We note

that, while uij is a 0 or 1 parameter, J1 is exactly the same SSw used in the RS and

RMSSTD indices. But, unlike these two indices, the XB index takes into account the

total number of samples N . This does not normalize the XB index, but it does help to

limit the increase in the index when the number of samples changes incrementally. We can

also observe that the XB index uses the minimum distance dmin between the centroids of

all cluster pairs, even though it is different from the distance min dci,cj
used in Dunn′s

index. The difference between dmin and min dci,cj
could be regarded as the sum of the

variances of cluster ci and cluster cj . From this point of view, we can say that the XB

index is somehow a hybrid of the RMSSTD index and Dunn′s index. The lower the

value of the XB index, the better the clustering should be.

However, once XB index finds the nearest cluster pairs, it ignores the distribution of other

clusters, on condition that the distances between any two of them are not less than dmin

and all clusters maintain the same SSw. The XB index has some advantages. It is a

minimum-value-preferred index, and consequently we do not need to find the "knee", as

in the RS or RMSSTD indices. Moreover, unlike Dunn′s index, the XB index does
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not evaluate the distance between any two data points, but rather the distance between any

two clusters, and thus is much less complex than than Dunn′s index. This makes the XB

index a better choice than Dunn′s index or the RMSSTD and RS indices.

4.2.5 PBM index

Like the XB index, the PBM index (78) is suitable for both fuzzy clustering and crisp

clustering. Supposing that we have a data set with N samples X = {x1, · · · , xN}, and

nc clusters ci, 1 ≤ i ≤ nc, with respect centroids vi, 1 ≤ i ≤ nc and a given a matrix of

membership U = {uij} to denote the degree of membership of the sample xi in the cluster

cj , we define the measure of within-cluster scatter Enc as :

Enc =
nc∑
i=1

ni∑
j=1

uij‖xj − vi‖ (4.16)

Then we define the inter-cluster measure Dnc as :

Dnc =
nc

max
i,j

‖vi − vj‖ (4.17)

The final PBM index is thus defined by :

PBM = (
1

nc
× E1

Enc

×Dnc)
2 (4.18)

where E1 is a constant for a given data set, we could simply set E1 equal to 1. What we

notice first is that, as with most of the other indices, the PBM index uses the within-

cluster measure. In fact, Enc is equal to J1 in the XB index, equal to SSw in the RS and

RMSSTD indices. Considering the influence of the number of clusters, the PBM index

takes a step which is similar to that taken with the RMSSTD index, which is to divide

the value Dnc

Enc
by the number of clusters nc.
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However, unlike Dunn′s index and the XB index, the PBM index uses the maximum

distance between centroids of all the cluster pairs. As a result, the larger the PBM index,

the more compact each cluster will be. But, the use of the maximum distance between

centroids is less relevant to clustering fitness. The main problem of clustering is to make

sure that two closest clusters are well separated, and not that the two clusters furthest apart

can be further separated.

4.2.6 Davies-Bouldin (DB) index

The Davies-Bouldin (DB) index (4; 46; 45; 71; 78) is a function of the ratio of the sum

of within-cluster scatter to between-cluster separation. The scatter within the ith cluster is

computed as :

Si,q = (
1

|Ci|
∑
x∈Ci

{‖x− zi‖q})
1
q (4.19)

where |Ci| is the number of samples belonging to cluster Ci, and zi is the centroid of

cluster Ci. Usually, we use q = 2 for the DB index, and the distance between cluster Ci

and Cj is defined as :

dij,t = (

p∑
s=1

‖zis − zjs‖t)
1
t = ‖zi − zj‖ (4.20)

where Si,q is the qth root of the qth moment of the points in cluster i with respect to their

mean, and is a measure of the dispersion of the points in cluster i. Si,q is the average Eu-

clidean distance of the vectors in class i from the centroid of class i. dij,t is the Minkowski

distance of order t between the centroids that characterize clusters i and j. p is the dimen-

sion of features, and, in general, t = 2 is used for dij,t. Subsequently, the measurement
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based on the ratio of within-cluster scatter to between-cluster separation can be obtained :

Ri,qt = max
j,j 6=i

{Si,q + Sj,q

dij,t

} (4.21)

The Davies-Bouldin index is then defined as :

DB =
1

K

K∑
i=1

Ri,qt (4.22)

where K is the number of clusters. In practice, we set q = 1, t = 1, so that :

Si = (
1

|Ci|
∑
x∈Ci

{‖x− zi‖2}) (4.23)

dij = (‖zi − zj‖) = ‖zi − zj‖ (4.24)

Ri = max
j,j 6=i

{Si + Sj

dij

} (4.25)

It is clear that Si is the average of Euclidean distance of the vector X in cluster Ci with

respect to its centroid zi, and dij is the Euclidean distance between the centroids zi and zj

of the clusters Ci and Cj respectively. The smaller the DB index, the better the clustering

is supposed to be. Thus, the DB index has two elements: the compactness of each cluster

pairs Si,q+Sj,q, and the inter-cluster scatter dij . Moreover, the DB index is somehow more

significant than all the other indices we have mentioned previously, for the following three

reasons:
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a. The measure of compactness of each cluster pairs Si,q + Sj,q is similar to the sum of

the within-cluster scatter used in other indices. But, instead of summing them all,

this index tackles each cluster pairs separately and is more adequate.

b. The use of the inter-cluster scatter dij for each single cluster, instead of just the

minimum or maximum functions, makes this index more sensitive.

c. The compactness of each cluster pairs Si,q + Sj,q and the inter-cluster scatter dij

are combined by calculating their ratio. This feature gives the index a significant

capacity to find a point of compromise between two clustering criteria: the distance

between clusters of different clusters and the compactness of single clusters.

Based on these properties, we can say that the DB index should perform better than all

other indices mentioned previously. However, the DB index does have its own drawbacks,

a potential problem being that it uses the operations such as Ri,qt, the maximum of all

cluster pairs for a certain cluster, and
∑K

i=1 Ri,qt, the summation of all the maximum

values obtained on all clusters, to take into account all clusters separation. However, this

process allows just one extremely bad cluster separation to overwhelm all the other good

cluster separations. Other than this, the calculation of the DB index on single cluster pairs

is convincing.

4.2.7 clustering validity index for Codebook Size Selection

Among the above clustering validity indices, Dunn’s index, the DB index and the XB index

are considered as the most adequate ones. However, the drawback of Dunn’s index is its

high calculation complexity. The derivation of the DB index has convincing theoretical

support, but its problem is that it sums all the maximum values obtained on all clusters,

which means that one extremely bad cluster separation may overwhelm all the other good

cluster separations. In contrast, the XB index uses only the minimum distance between
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centroids of cluster pairs, focusing on the nearest cluster pairs and ignores the distribution

of other clusters.

However, to obtain a group of potentially adequate codebook sizes, the applied clustering

validity index is not only supposed to find a single best number of clusters, but also several

best numbers of clusters. In other words, the clustering validity index used must have

several optima that can depict a data set at multiple levels of granularity (54; 91). This

property is important because the best number of clusters depends on different hierarchical

levels. An adequate clustering validity index should not only offer different clusterings,

but also a reasonable distinction among them. When HMM classifiers are trained with the

same features and with the same samples, the distinction among the codebooks is the only

possibility that results in diversity among classifiers and boosts the EoHMM performance.

The XB index is found to have this desirable property in our problem (Fig. 13). The plot

of XB index values versus the numbers of clusters gives a lot of minima with XB index

values smaller than those of their neighbours, and these are actual optima for codebook

sizes and are thus adequate for the construction of an EoHMM. In the next section, we

detail the process for construction of EoHMMs based the on XB index, and the ensemble

selection and classifier combination schemes considered.

4.2.8 Generation of HMM classifiers

Given a data set of X = {xi, 1 ≤ i ≤ N}, where N is the number of samples, and

defining a possible range M for the numbers of clusters j, 1 ≤ j ≤ M , the cluster index

should give the fitness Ft(j) for these M clusterings, with 1 ≤ j ≤ M . Due to the

tremendous size of data set, we can use a smaller data set with Ns samples extracted from

N samples for clustering goodness evaluation, Ns = ηṄ , where η is the proportion of

samples used. Assuming that we intend to select L best clusterings, then these clusterings

could be selected with clustering validity index values Ft(j), 1 ≤ j ≤ L. These selected

numbers of clusterings then serve as the sizes of the codebook of HMM classifiers. The



98

selected codebook sizes are used again for the clustering on all N samples, with the result

that the respective codebooks are generated. Each HMM is then trained with a different

codebook. This pool of HMM classifiers must go further through the ensemble selection

process to decide which classifiers are adequate for construction of an ensemble. Then the

selected classifiers would be combined according to a fusion function.

Given the various scheme of objective functions for ensemble selection and the fusion

functions for classifier combination, it is of the great interest to test these schemes on real

problem. We perform the experiment on a benchmark data base in the next section.

4.3 Experiments with EoHMMs

The experimental data was extracted from NIST SD19 as a 10-class handwritten numeral

recognition problem. As a result, there is an HMM model for each class, and 10 HMM

models for an HMM classifier. Five databases were used: the training set with 150000

samples (hsf_{0− 3}) was used to create 40 HMM classifiers, 20 of them being column

HMM classifiers and other 20 being row HMM classifiers. The large size of the data set for

training can lead to a better recognition rate for each individual classifier. For codebook

size selection evaluated by clustering validity indices, due to the extremely large data set

(150000 images are equivalent to 5048907 columns and 6825152 rows, with 47 features

per column or per row), we use only the first 10000 images from the training data set to

evaluate the quality of the clustering, and they are equal to 342910 columns and 461146

rows. The sampling may present a slight bias in clustering, but, because even the sampled

data set contains 0.34 millions column samples and 0.46 millions row samples, we believe

it is large enough to evaluate the quality of the clustering and discover the multiple-level

granularity of the data set. Note that, at the clustering evaluation stage, we only examined

the different numbers of clusters with the clustering validity index to select several suit-

able codebook sizes for an EoHMM. Then, the codebooks were generated with the whole

training set, according to the previously selected codebook sizes. The training validation
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set of 15000 samples was used to stop HMM classifiers training once the optimum had

been achieved. The optimization set containing 15000 samples (hsf_{0 − 3}) was used

for GA searching for ensemble selection. To avoid overfitting during GA searching, the

selection set containing 15000 samples (hsf_{0 − 3}) was used to select the best solu-

tion from the current population according to the defined objective function and then to

store it in a separate archive after each generation. The selection set is also used for the

final validation of HMM classifiers. Using the best solution from this archive, the test set

containing 60089 samples (hsf_{7}) was used to evaluate the accuracies of EoC.

Each column HMM used 47 features obtained from each column, and each row used 47

features obtained from each row (See Fig. 11). The features were extracted by the same

means described in (8; 9), and K-Means was used for vector-quantization to generate code-

books for the HMM. The number of HMM states was optimized by the method described

in (102). The HMMs were trained by Baum-Welch algorithm (83; 84). The benchmark

HMM classifiers used 47 features, with the codebook size of 256 clusters (8; 9). For bench-

mark column HMM, we have a recognition rate of 97.60%, and for benchmark row HMM

the classification accuracy was about 96.76%, while the combination of the benchmark

column HMM and the benchmark row HMM achieved a rate of 98.00%. The possible up-

per limit of classification accuracy (the oracle) is defined as the ratio of samples which are

classified correctly by at least one classifier in the pool to all samples. The oracle achieved

a rate of 99.76% on the test set, considering the pool of the whole HMM classifiers. For

combining classifiers, 12 different fusion functions were tested.

4.3.1 Behaviors of clustering validity indices in HMM features

To decide on suitable codebook sizes of HMM, we carried out clusterings on HMM fea-

tures. Due to the large data size, it is clear that we could not use all the training set to do

the clusterings, all with different numbers of clusters. As a result, the first 10000 images in
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training set were used for clustering, these images containing 342910 columns and 461146

rows.

Before we constructed the EoHMM, we performed K-Means clusterings with different

numbers of clusters on HMM features, and showed the properties of clustering validity

indices in this problem. Processing clusterings from 3 clusters to 2048 clusters for the

clustering task, we showed the relationship between the XB index and the number of

clusters for column HMM features, and many minima can be observed (Fig. 13(a)). The

optimum codebook size defined by the XB index value is 1893 clusters, and, with this

codebook size, the column HMM classifier can achieve 98.92% recognition rate on the

validation set, and 98.32% on the test set. A similar tendency can be observed in row

HMM features (Fig. 13(b)). This property, as we argued, is important to get multiple

levels of granularity of the data set, and it offers codebook sizes for HMMs with the

potential to perform well.

Figure 13 The relationship between XB index and the number of clusters for: (a) HMM
column features; (b) HMM row features. The circled areas indicate the places
where the best 40 optima were found. The arrow indicates the smallest XB
value with the respective number of clusters. Note that clusterings were
carried out on the first 10000 images of the training data set. (See Table
XI for details)
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In contrast, the relationship between the DB index and the number of clusters was much

more ambiguous. In general, for column HMM features, the curve reached its minimum

at 5 and maximum at 132, then decreased almost constantly (Fig. 14(a)). Apparently,

a simple 5-cluster optimum is not useful for the codebook, as the corresponding column

HMM can achieve a classification accuracy of only 71.69% on validation set, and 69.43%

on the test set. Moreover, most of the optima selected by the DB index will contain fewer

than 132 clusters.

Figure 14 The relationship between DB index and the number of clusters for: (a) HMM
column features; (b) HMM row features. Optima are minima in DB index,
we enlarge the part where the optimum is located. Note that clusterings were
carried out on the first 10000 images of the training data set

As we stated previously, the PBM index is less convincing. The PBM index suggests that

the best clustering is with 3 clusters for column HMM (Fig. 15(a)), which can achieve a

recognition rate of only 63.49% on the validation set, and 61.72% on the test set. Note

that the maximum value in PBM represents the optimum. After slight variation in the

beginning, the curve decreases continuously. The PBM thus encourages the use of small

codebook sizes, which cannot lead to any useful results for this problem.

For RS and RMSSTD, the optima are located on the knees of the curves, but it might not

be easy to find out these knees. For RS, the so called knee might be found at roughly 140
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Figure 15 The relationship between PBM index and the number of clusters for: (a)
HMM column features; (b) HMM row features. The optimum has the
maximum value in PBM index, we enlarge the part where the optimum is
located. Note that clusterings were carried out on the first 10000 images of
the training data set

clusters for column HMM (Fig. 17(a)), where column HMM achieved 98.14% recognition

rate on the validation set, and 97.36% on the test set. For RMSSTD, the knee is roughly

at 131 clusters for column HMM (Fig. 16(a)), with which column HMM can achieved a

98.08% classification accuracy on the validation set, and 97.12% on the test set. But the

disadvantage common to the RS and RMSSTD indices is that they give only one optimum

solution, and there is no way to find multiple optima, which makes it impossible to use

them for the construction of an EoHMM. Finally, we must mention that, given the size

of the data set, it is impossible to evaluate Dunn′s index, because Dunn′s index has

to calculate the distances between 3429102 sample pairs for column HMM and 4611462

sample pairs for row HMM.

4.3.2 The Multiple Levels of Granularity in Codebook Size Selection

These observations indicate that XB index has the properties desired for HMM codebook

size selection. Note that, in order to construct an EoHMM which performs well, we need

to select several fit codebooks, and, moreover, these codebooks must lead to diverse HMM
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Figure 16 The relationship between RMSSTD index and the number of clusters for: (a)
HMM column features; (b) HMM row features. The optimum is located on
the "knee" of the curve in RMSSTD index, we enlarge the part where the
optimum is located. Note that clusterings were carried out on the first 10000
images of the training data set

classifiers so that the combination of these HMM classifiers can actually achieve even

better performance. As we observed in the previous section, the XB index not only finds

fit codebooks, but it also reveals the multiple granularity of the data set. Moreover, its

calculation is much less time-consuming than Dunn’s index. All these advantages favour

the use of the XB index.

Intuitively, because the clusterings with different granularity levels are located in different

neighbourhoods, it is very unlikely that the codebook size optima found in a single neigh-

bourhood can represent the concept of the multiple-level granularity. For this reason, it is

important to have clusterings in different neighbourhoods. To satisfy this condition, we

may simply require the selected clusterings have non-adjacent numbers of clusters.

Although the multiple-level granularity implicates the diversity related to different parti-

tions between clusterings, we still need to confirm that the concept of the multiple-level

granularity can also lead to better EoHMM performance, i.e., the optima found in differ-

ent neighbourhoods can lead to better EoHMM performance than those found in the same
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Figure 17 The relationship between RS index and the number of clusters for: (a) HMM
column features; (b) HMM row features. The optimum is located on the
"knee" of the curve in RS index, we enlarge the part where the optimum is
located. Note that clusterings were carried out on the first 10000 images of
the training data set

neighbourhood. Thus, we investigated and compared the performances of EoHMMs con-

structed by codebook sizes selected by the XB index optima in the same neighbourhood

and those in different neighbourhoods.

We performed clusterings on the first 10000 images in the training set with numbers of

clusters from 3 ∼ 2048. For HMM column features, the best codebook sizes defined

by the XB index were 1893, 1892, 1891, 1890 and 1889 clusters, with an XB index of

10943, 10949, 10955, 10961, 10967 respectively. Note that these optima were selected

by absolute minima in the XB index, and no multiple levels of granularity were involved.

Consequently all selected codebook sizes are in the same neighbourhood.

However, if we require that all optima have an XB index value smaller than those of their

neighbours, i.e., if we require simply that for any selected number of cluster nc ≥ 2, its

XB value XB(nc) must be smaller than those of its two nearest neighbours, XB(nc) <

XB(nc + 1), XB(nc) < XB(nc − 1), then we can obtain codebook sizes in different

neighbourhoods. Under this condition, the clusterings with 1892, 1891, 1890 and 1889
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clusters do not qualify. In contrast, we will have the following best codebook sizes, as

defined by the XB index: 1893, 1991, 1986, 1965 and 2012 clusters, with an XB index of

10943, 10982, 11478, 11498 and 11605 respectively. Note that, in this case, the optima

were selected by relative minima in XB index, i.e. we required that these minima be

the smallest in their neighbourhoods, and thus we took into account of multiple levels of

granularity.

The same process was carried out for HMM row features, and the best codebook sizes

defined by the XB index were 1771, 1770, 1769, 1768 and 1767 clusters, with an XB

index as 4565, 4569, 4572, 4574 and 4577 respectively. If we require that all optima have

an XB index value smaller than those of their neighbours, we will have the following best

codebook sizes, as defined by the XB index: 1771, 1809, 2022, 1975 and 1978 clusters,

with an XB index of 4565, 4675, 4741, 4764 and 4782 respectively.

We then construct 2 basic EoHMMs on both the column HMM features and the row HMM

features. One EoHMM was constructed with codebook sizes with XB indices that are

the absolute minima, while another EoHMM was constructed with codebook sizes with

XB index values that are relative minima, i.e., their XB indices are smaller than their

neighbours. We then evaluated the performance of these two EoHMM on both the column

HMM feature and the row HMM feature.

Table XI

Comparison classification accuracy with ensembles composed of 5 absolute optima
(ABS) and of 5 relative optima (REL) in terms of XB index. Results are shown on test set

and validation set. The number of classifiers is shown in parenthesis

COL-ABS (5) COL-REL (5) ROW-ABS (5) ROW-REL (5)

Validation Set 99.12 % 99.13 % 98.80 % 98.88 %
Test Set 98.49 % 98.54 % 97.92 % 98.14 %
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Even though the ensembles are constructed with a small number of classifiers, we can

observe that optima found in different neighbourhoods by XB index are slightly better

than those found in the same neighbourhoods (Table XI). Note that all HMM classifiers are

trained with the same number of samples and the whole feature set, and they are different

from one another only in the codebooks. We can expect that the difference will be more

apparent when more HMM classifiers are used. To prove that an EoHMM constructed

with optima found in different neighbourhoods by the XB index can significantly enhance

the performance, we went on constructing 20-column HMM classifiers and 20-row HMM

classifiers with optima in different neighbourhoods (see below). These HMM classifiers

will later be combined and the improvement be measured.

4.3.3 Optimum Codebooks Selected by XB Index

For all clusterings from 3 clusters to 2048 clusters on the first 10000 images in the training

set, the 20 smallest minima with XB index values smaller than those of their neighbours

were selected as the adequate numbers of clusters, i.e. the 20 most pertinent sizes of code-

books. Once the optimum codebook sizes were selected, we performed clusterings on the

whole training data (including 150000 images) with the selected numbers of clusters to

generate HMM codebooks. These codebooks were then used for HMM sequence obser-

vations and HMM classifier training. This process was carried out for the column features

as well as for the row features, all HMM classifiers being trained with the whole feature

set and all the training samples. Thus, 20-column HMM classifiers and 20-row HMM

classifiers were generated, for a total of 40 HMM classifiers (Table XII).

The best single column HMM achieved a classification accuracy of 98.42% with a code-

book size of 1965, which is 0.82% better than the benchmark column HMM classifier;

and the best row HMM classifier had a recognition rate of 97.97%, with a codebook

size of 1786, which is 1.21% better than the benchmark row HMM. Compared with the

benchmark column HMM classifier (97.60%) and with the benchmark row HMM classifier
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Table XII

Classification accuracies of 20 column HMM classifiers and 20 row HMM classifiers
generated by different codebook sizes on test data set. CCS: Column Codebook Size;

RCS: Row Codebook Size; CA: Classification Accuracy. The codebook sizes are ranked
by their XB index from left to right

CCS 1893 1991 1986 1965 2012 1934 1796 1998 1627 269

CA 98.32 % 98.33 % 98.35 % 98.40 % 98.30 % 98.39 % 98.34 % 98.33 % 98.33 % 97.56 %

CCS 2040 264 2048 1625 1715 1665 1667 1491 1488 1456

CA 98.42 % 97.55 % 98.35 % 98.37 % 98.37 % 98.34 % 98.32 % 98.29 % 98.29 % 98.30 %

RCS 1771 1809 2022 1975 1978 1786 1657 1897 1851 1694

CA 97.84 % 97.88 % 97.93 % 97.73 % 97.95 % 97.97 % 97.83 % 97.86 % 97.93 % 97.89 %

RCS 1904 1505 1503 1920 1616 1520 1517 1835 1421 1490

CA 97.83 % 97.84 % 97.80 % 97.83 % 97.89 % 97.84 % 97.75 % 97.90 % 97.70 % 97.73 %

(96.76%), codebooks selected by the XB index gave some improvement to performance.

Note that performance is not necessarily proportional to the size of the codebooks. Based

on these HMM classifiers, we then construct the EoHMMs.

4.3.4 Column-EoHMM and Row-EoHMM

Without carrying out any ensemble selection process, we simply constructed three ensem-

bles composed entirely of column HMM classifiers (COL-HMM), entirely of row HMM

classifiers (ROW HMM) and of all HMM classifiers (ALL-HMM) (Table XIII). The en-

sembles were then combined by the SUM rule (56; 109; 111) and PCM-MAJ rule (59),

since these two fusion functions have been shown to be very effective (56; 59). We note

that the ensemble of column HMM classifiers improved by 0.14% over the single best

column HMM classifier using the PCM-MAJ fusion function, while the ensemble of row

HMM classifiers improved by 0.29% over the single best row HMM classifier using the

SUM fusion function. This means that by using different codebook sizes to construct an

EoHMM, we explored the diversity of different codebooks of HMM and achieve a better

result. Moreover, the ensemble of all HMM classifiers gave the best performance, given
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that the obvious diversity between the column HMM classifiers and the row HMM classi-

fiers. With the PCM-MAJ rule, ALL-HMM performed 0.42% better than the single best

HMM classifier, and achieved the best classification accuracy.

Table XIII

Comparison of classification accuracies on test data set with two different fusion
functions and on different types of EoHMMs. The number of classifiers is shown in

parenthesis

Fusion Functions → PCM-MAJ SUM

/ EoHMM ↓
COL-HMM (20) 98.56 % 98.55 %

ROW-HMM (20) 98.20 % 98.26 %
ALL-HMM (40) 98.84 % 98.78 %

4.3.5 Ensemble Selection

For evaluating classifier combinations, another approach is to go through the process of en-

semble selection, because one of the most important requirements of EoCs is the presence

of diverse classifiers in an ensemble. We tested the simple majority voting error (MVE)

and the SUM rule, because of their reputation for being two of the best objective func-

tions for selecting classifiers for ensembles (89). We also tested 10 different compound

diversity functions (CDFs) (58), which combine the pairwise diversity measures with in-

dividual classifier performance to estimate ensemble accuracy, but do not use the global

performance of the EoC. CDFs have been shown to be better than traditional diversity

functions for ensemble selection (58).

These objective functions were evaluated by genetic algorithm (GA) searching. We used

GA because the complexity of population-based searching algorithms can be flexibly ad-

justed, depending on the size of the population and the number of generations with which

to proceed. Moreover, because the algorithm returns a population with the best combina-
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Table XIV

Best Performances from 30 GA replications on the test data set. The numbers of
classifiers are noted in parenthesis. The SUM was used as the fusion function in EoC

Recognizers Column HMM classifiers Row HMM classifiers Column & Row HMM classifiers

Benchmark 97.60 % (1 / -) 96.76 % (1 / -) 98.00 % (2 / SUM)
XB Selection 98.40 % (1 / -) 97.97 % (1 / -) 98.70 % (2 / SUM)

Classifier Pool 98.55 % (20 / SUM) 98.26 % (20 / SUM) 98.78 % (40 / SUM)
EoHMM Selection - - 98.80 % (16 / SUM)

Figure 18 The Rejection mechanism with the SUM rule

tion, it can potentially be exploited to prevent generalization problems (89). GA was set

up with 128 individuals in the population and with 500 generations, which means 64, 000

ensembles were evaluated in each experiment. The mutation probability was set to 0.01,

and the crossover probability to 50%. With 12 different objective functions (MVE, SUM,

10 compound diversity functions, including the disagreement measure (CDF-DM), the

double-fault (CDF-DF), Kohavi-Wolpert variance (CDF-KW), the interrater agreement
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(CDF-INT), the entropy measure (CDF-EN), the difficulty measure (CDF-DIFF), general-

ized diversity (CDF-GD), coincident failure diversity (CDF-CFD), Q-statistics (CDF-Q),

and the correlation coefficient (CDF-COR) (58)), and with 30 replications, 23.04 million

ensembles were searched and evaluated. A threshold of 3 classifiers was applied as the

minimum number of classifiers for an EoC during the whole searching process.

The selected ensembles were then combined by two types of fusion functions: The SUM

rule (56; 109; 111) and the PCM-MAJ rule (58). Among all objective functions, the

best ensemble was selected by the CDF-CFD and composed of 16 HMM classifiers. The

recognition rate achieved by the selected ensemble is 98.80% with the SUM rule, and

98.84% with the PCM-MAJ rule. For all replications of GA searching, the variances are

smaller than 0.01%, which indicates that the GA searching gives quite stable results.

We showed the results in Table XIV and Table XV. We note that the selected ensemble

did perform better than column-HMM classifiers and row-HMM classifiers, but showed

limited improvement compared with the ensemble of all the HMM classifiers. The PCM-

MAJ rule performed better than the SUM rule on the selected ensemble. The PCM-MAJ

has an improvement of 0.86% compared with the Benchmark EoHMM, and of 0.16%

compared with XB-Selection EoHMM.

Table XV

Best Performances from 30 GA replications on the test data set. The numbers of
classifiers are noted in parenthesis. The PCM-MAJ was used as the fusion function in

EoC

Recognizers Column HMM classifiers Row HMM classifiers Column & Row HMM classifiers

Classifier Pool 98.56 % (20 / PCM-MAJ) 98.20 % (20 / PCM-MAJ) 98.84 % (40 / PCM-MAJ)
EoHMM Selection - - 98.86 % (16 / PCM-MAJ)

Fig.- 18 and Fig.- 19 showed the rejection curves of the SUM rule and of the PCM-MAJ

rule respectively. For the Sum rule, it is apparent that the selected ensemble performed
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Figure 19 The Rejection mechanism with the PCM-MAJ rule

better than the column-HMM ensemble and the row-HMM ensemble, and had the compa-

rable performance with the ensemble of all HMM classifiers (Fig.18).

If the PCM-MAJ rule was applied, we see that it offered a better improvement than the

SUM rule for the rejection rate smaller than 2%. But unlike the SUM rule, it is hard for

the PCM-MAJ rule to do more rejection when the majority of classifier-pairs agrees on the

most of samples (59). After achieving a certain threshold, the system needs a much larger

rejection rate to do further rejection. What is more, if all classifier-pairs agree on the most

of samples, it is impossible to have more rejection, as in the case of the column-HMM

ensemble (Fig.19). Note that to apply PCM-MAJ, the ensembles must have more than

2 classifiers, and thus we cannot use PCM-MAJ as a fusion function on the Benchmark

EoHMM and on the XB-Selection EoHMM.
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4.4 Discussion

In this work, we carried out a general analysis of the clustering validity indices in the

literature. Of all of them, the XB index, Dunn’s index and the DB index were regarded

as the most reasonable. Dunn’s index has a much higher calculation complexity, and thus

is not applicable in large data sets. The DB index is less time-consuming and detects the

best clustering for each cluster i by its statistic component Ri,qt, but the DB index has a

drawback, which is its global evaluation with
∑K

i=1 Ri,qt. In contrast, the XB index targets

the minimum distance dmin between the centroids of the two nearest clusters, and thus

evaluates clustering by its worst local case. What is more, the XB index demonstrates the

stronger inclination to show multiple levels of granularity of data set. The XB index is

thus considered more adequate for the selection of codebooks.

HMM classifiers constructed with codebook sizes selected by the XB index show a clear

improvement compared with benchmark HMM classifiers, in both column HMM classi-

fiers and row HMM classifiers (8; 9). With an improvement of 0.80% over the benchmark

column HMM classifier and 1.21% over the benchmark row HMM classifier, the useful-

ness of the XB index in optimizing HMM is undeniable.

As a by-product, we can also use these HMM classifiers trained with different codebook

sizes to construct an EoHMM. With the SUM fusion function, the improvement in the

classification accuracy of the ensemble of column HMM classifiers is 0.14% over that of

the single best column HMM classifier, while the improvement in the accuracy of the en-

semble of row HMM classifiers is 0.29% over that of the single best row HMM classifier.

Considering that the best column HMM classifier already has a classification accuracy of

98.40% and the best row HMM classifier has a recognition rate of 97.97%, this improve-

ment is significant. Such an improvement also indicates that the disadvantage of discrete

HMM can be compensated for by EoHMM based on various codebook sizes.
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Considering the objective function for EoHMM ensemble selection, the SUM rule and

all the CDF rules give similar and comparable results. We also note that, by combining

column HMM classifiers and row HMM classifiers, the single best EoHMM of all the

replications can have a classification accuracy of 98.86%. This is about 0.30% better

than COL-HMM, thanks to the further diversity contributed by row features and column

features (Table XIV & Table XV).

We note that the proposed method has a speed-up advantage over other EoHMM creation

schemes. Suppose we need to construct M HMM classifiers for EoHMM, given S possible

codebook sizes, the proposed scheme evaluates S clusterings using the XB index and

then trains M HMM classifiers. For other ensemble creation methods, such as Bagging,

Boosting, and Random Subspaces, we need to train M ∗ S HMM classifiers and then

select among them for the best codebook size. This offers a significant speed-up in the

optimization of the codebook sizes and a new ensemble creation method.

Considering other classification methods applied in the same data set, KNN with 150000

samples can achieve 98.57% accuracy, MLP can achieve 99.16% accuracy (75), and the

use of SVM can achieve a 99.30% recognition rate with a pairwise coupling strategy and

a 99.37% with the one-against-all strategy (74). EoHMM performance very close to that,

and its further optimization might achieve better results.

4.5 Conclusion

A fast codebook size optimization method for HMM and a new scheme of ensemble of

discrete HMM were proposed in this chapter. The codebook size was selected by evalu-

ating the quality of clustering during the construction of codewords. Because the method

does not require any HMM classifiers training, the proposed scheme offers a significant

speed-up for codebook size optimization. In order to fairly evaluate clustering quality, we

used a clustering validity index based on different predefined numbers of clusters.
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Though a number of clustering validity indices were available, we used the XB index be-

cause it has the strong theoretical support (108) and has been shown effective in clustering

(4; 78). Moreover, the XB index demonstrated the property of discovering multiple levels

of granularity in the data set, which would allow us to select adequate codebook sizes. In

general, the HMM classifiers with codebook sizes selected by the XB index demonstrated

an apparently better performance than benchmark HMM classifiers. As a by-product, we

can construct an EoHMM trained with the full samples and full features based on different

codebook sizes. Because the XB index gives multiple fit codebook sizes, these codebook

sizes could result in more accurate and diverse HMM classifiers, and thus provide us with

an EoHMM. The combination of column HMM classifiers and row HMM classifiers fur-

ther improve the global performance of EoHMM.

To conclude, the result suggests that the new EoHMM scheme is applicable. The degra-

dation associated with vector quantization in discrete HMM is compensated by the use

of EoHMM without the need to deal with a number of optimization of parameters found

in continuous HMM. EoHMM can also explore the advantage of the number of different

ensemble combination methods proposed in the literature.

Future work is planned to further improve the performance of EoHMM by exploring the

issue of the number of states that need to be optimized as well. With EoHMM based

on different numbers of states, it will be possible to obtain further improvement without

adding any parameters optimization problems, which will be of the great interest in the

application of HMM. Furthermore, the codebook pruning will be also an interesting issue

for the decrease of the computation cost for the construction of HMM classifiers.

At this chapter, we have already a complete system for ensemble creation, ensemble selec-

tion and classifier combination. We see the impacts of these processes and the improve-

ments on an EoC. However, the system is not perfect. We can improve it on a number of

issues. For one, we note that the ensemble selection process is largely a static one. That



115

is, we select one ensemble for all test patterns. The question is: Can we select different

ensembles for different test patterns? We believe that this approach is feasible, and thus

propose a new dynamic ensemble selection scheme at the next chapter.



CHAPTER 5

FROM DYNAMIC CLASSIFIER SELECTION TO DYNAMIC ENSEMBLE

SELECTION

Static selection schemes select an EoC for all test patterns, and dynamic selection schemes

select different classifiers for different test patterns. Nevertheless, it has been shown that

traditional dynamic selection performs no better than static selection. We propose four

new dynamic selection schemes which explore the properties of the oracle concept. Our

results suggest that the proposed schemes, using the majority voting rule for combining

classifiers, perform better than the static selection method.

5.1 Introduction

The mechanism for ensemble selection is designed to select adequate classifiers from a

pool of different classifiers, so that the selected group of classifiers can achieve optimum

recognition rates. We can perform this task either by static selection, i.e. selecting an EoC

for all test patterns, or by dynamic selection, i.e. selecting different EoCs for different test

patterns.

However, since different test patterns are, in general, associated with different classifica-

tion difficulties, it is reasonable to assume that they might be better if they are fit to differ-

ent classifiers rather than to a single static EoC. This may give us reason to believe that dy-

namic classifier selection is better than static ensemble selection. The dynamic scheme ex-

plores the use of different classifiers for different test patterns (12; 15; 14; 28; 44; 65; 107).

Based on the different features or different decision regions of each test pattern, a classi-

fier is selected and assigned to the sample. Some popular methods are a priori selection,

a posteriori selection, overall local accuracy and local class accuracy (15; 14; 28; 107),

hereafter referred to as the A Priori, A Posteriori, OLA and LCA methods respectively.

In general, their performances are compared with that of the oracle, which assigns the
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correct class label to a pattern if at least one individual classifier from an ensemble pro-

duces the correct class label for this pattern. Against all expectations, however, it has been

shown that there is a large performance gap between dynamic classifier selection and the

oracle (15), and, moreover, dynamic classifier selection does not necessarily give better

performance than static ensemble selection (28).

A critical point in dynamic classifier selection is that our choice of one individual classifier

over the rest will depend on how much we trust the estimate of the generalization of the

classifiers (65). The advantage of dynamic ensemble selection is that we distribute the

risk of this over-generalization by choosing a group of classifiers instead of one individual

classifier for a test pattern. So far, this scheme seems to work well.

We note that most dynamic classifier selection schemes use the concept of classifier ac-

curacy on a defined neighborhood or region, such as the local accuracy A Priori or A

Posteriori methods (15). These classifier accuracies are usually calculated with the help of

KNN, and its use is aimed at making an optimal Bayesian decision. However, KNN could

be still outperformed by some static ensemble selection rule, such as the MVE. This poses

a dilemma in the estimation of these local accuracies, because their distribution might be

too complicated for a good result. Interestingly, dynamic classifier selection is regarded

as an alternative to EoC (15; 14; 107), and is supposed to select the best single classifier

instead of the best EoC for a given test pattern. The question of whether or not to combine

dynamic schemes and EoC in the selection process is a debate being carried out (65). But,

in fact, the two are not mutually exclusive. Hybrid methods have been shown to be useful,

in that they apply the methods for different patterns (44; 65). However, we are interested in

exploring another type of approach here, because we believe that ensemble selection can

be dynamic as well. This means that, instead of performing dynamic classifier selection,

we will perform dynamic ensemble selection (Fig. 20).
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Figure 20 Three different schemes for selection and combining classifiers: (a) static
ensemble selection; (b) dynamic classifier selection; (c) proposed dynamic
ensemble selection. The solid line indicates a static process carried out only
once for all patterns, and the dash lines indicate dynamic process repeated
each time for a different test pattern

We also note that the oracle is usually regarded as a possible upper bound for EoC perfor-

mances. As far as we know, no effort has been made to explore the appropriateness of the

properties of the oracle for dynamic selection. We believe that the complicated process of

local classifier accuracy estimation can actually be carried out by the oracle on a validation

data set, and a simple KNN method can allow the test data set to obtain the approximate

local classifier accuracy from the validation data set. Here are the key questions that need

to be addressed:

a. Can the concept of the oracle be useful in dynamic ensemble selection?

b. Can dynamic ensemble selection outperform dynamic classifier selection?
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c. Can dynamic ensemble selection outperform static ensemble selection?

To answer these questions, we propose a dynamic ensemble selection scheme which ex-

plores the properties of the oracle concept, and compare the scheme with static ensemble

selection guided by different objective functions. All the approaches are evaluated on

small-scale pattern recognition problems taken from the UCI machine learning repository,

and on a large-scale pattern recognition problem related to the recognition of handwrit-

ten numerals from NIST SD19. It is important to state that the purpose of this work is

not to achieve the best handwritten pattern recognition rate using dynamic selection, but

to explore a potential advantage of dynamic selection which might suit the nature of the

dynamic environment in machine learning, such as incremental learning. In order to gain

a better understanding of the impact of dynamic selection, we use weak classifiers in our

experiment.

5.2 Dynamic Classifier Selection Methods

5.2.1 Overall Local Accuracy (OLA)

The basic idea of this scheme is to estimate each individual classifier’s accuracy in local

regions of the feature space surrounding a test sample, and then use the decision of the

most locally accurate classifier (107). Local accuracy is estimated as the percentage of

training samples in the region that are correctly classified.

5.2.2 Local Class Accuracy (LCA)

This method is similar to the OLA method, the only difference being that the local accu-

racy is estimated as the percentage of training samples relative to output classes (107). In

other words, we consider the percentage of the local training samples assigned to a class

cli by this classifier that have been correctly labeled.
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5.2.3 A Priori Selection Method (a priori)

The classifier accuracycan be weighted by the distances between the training samples in

the local region and the test sample. Consider the sample xj ∈ ωk as one of the k-nearest

neighbors of the test pattern X. The p̂(ωk|xj, ci) provided by classifier ci can be regarded

as a measure of the classifier accuracy for the test pattern X based on its neighbor xj . If

we suppose that we have N training samples in the neighborhood, then the best classifier

C∗ for classifying the sample X can be selected by (15; 28):

C∗ = argi max

∑N
j=1 p̂(ωk|xj ∈ ωk, ci)Wj∑N

j=1 Wj

(5.1)

where Wj = 1
dj

is the distance between the test pattern X and the its neighbor sample xj .

5.2.4 A Posteriori Selection Method (a posteriori)

If the class assigned by the classifier ci is known, then we can use the classifier accuracy

in the aspect of the known class. Suppose that we have N training samples in the neigh-

borhood and let us consider the sample xj ∈ ωk as one of the k-nearest neighbors of the

test pattern X. Then, the best classifier C∗(ωk) with the output class ωk for classifying the

sample X can be selected by (15; 28):

C∗(ωk) = argi max

∑
xj∈ωk

p̂(ωk|xj, ci)Wj∑N
j=1 p̂(ωk|xj, ci)Wj

(5.2)

where Wj = 1
dj

is the distance between the test sample and the training sample.

5.3 K-Nearest-Oracles (KNORA) Dynamic Ensemble Selection

All the above dynamic selection methods are designed to find the classifier with the great-

est possibility of being correct for a sample in a pre-defined neighborhood. We, however,
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are proposing another approach: Instead of finding the most suitable classifier, we select

the most suitable ensemble for each sample.

The concept of the K-Nearest-Oracles (KNORA) is similar to the concepts of OLA, LCA,

and the A Priori and A Posteriori methods in their consideration of the neighborhood of

test patterns, but it can be distinguished from the others by the direct use of its property

of having training samples in the region with which to find the best ensemble for a given

sample. For any test data point, KNORA simply finds its nearest K neighbors in the vali-

dation set, figures out which classifiers correctly classify those neighbors in the validation

set and uses them as the ensemble for classifying the given pattern in that test set.

We propose four different schemes using KNORA:

a. KNORA-ELIMINATE

Given K neighbors xj, 1 ≤ j ≤ K of a test pattern X, and supposing that a set of

classifiers C(j), 1 ≤ j ≤ K correctly classifies all its K nearest neighbors, then

every classifier ci ∈ C(j) belonging to this correct classifier set C(j) should submit

a vote on the sample X. In the case where no classifier can correctly classify all the

K nearest neighbors of the test pattern, then we simply decrease the value of K until

at least one classifier correctly classifies its neighbors (Fig. 21).

b. KNORA-UNION

Given K neighbors xj, 1 ≤ j ≤ K of a test pattern X, and supposing that the j

nearest neighbor has been correctly classified by a set of classifiers C(j), 1 ≤ j ≤

K, then every classifier ci ∈ C(j) belonging to this correct classifier set C(j) should

submit a vote on the sample X. Note that, since all the K nearest neighbors are

considered, a classifier can have more than one vote if it correctly classifies more

than one neighbor. The more neighbors a classifier classifies correctly, the more

votes this classifier will have for a test pattern (Fig. 22).



122

c. KNORA-ELIMINATE-W

This scheme is the same as KNORA-ELIMINATE, but each vote is weighted by the

distance between the neighbor pattern xj and the test pattern X.

d. KNORA-UNION-W

This scheme is the same as KNORA-UNION, but each vote is weighted by the

distance between the neighbor pattern xj and the test pattern X.

Figure 21 The KNORA-ELIMINATE only uses classifiers that correctly classify all the
K-nearest patterns. On the left side, test pattern is shown as a hexagon,
validation data points are shown as circles and the 5 nearest validation points
are darkened. On the right side, the used classifiers -the intersection of correct
classifiers- are darkened

Figure 22 The KNORA-UNION uses classifiers that correctly classify any of the K-
nearest patterns. On the left side, test pattern is shown as a hexagon,
validation data points are shown as circles, and the 5 nearest validation points
are darkened. On the right side, the used classifiers -the union of correct
classifiers- are darkened
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5.3.1 Comparison of Dynamic Selection Schemes on UCI Repository

To ensure that KNORA is useful for dynamic ensemble selection, we tested it on problems

extracted from a UCI machine learning repository. There are several requirements for the

selection of pattern recognition problems. First, to avoid identical samples being trained

in Random Subspace, only databases without symbolic features are used. Second, to

simplify the problem, we do not use databases with missing features. In accordance with

the requirements listed above, we carried out our experiments on 6 databases selected

from a UCI data repository (see Table XVI). In general, among the available samples,

50% are used as a training data set and 50% are used as a test data set, except for the

Image Segmentation data set, the training data set and test data set of which have been

defined on the UCI data repository. Of the training data set, 70% of the samples are used

for classifier training and 30% are used for validation.

Three ensemble creation methods have been used in our study: Random Subspaces, Bag-

ging and Boosting. The Random Subspaces method creates various classifiers by using

different subsets of features to train them. Bagging generates diverse classifiers by ran-

domly selecting subsets of samples to train classifiers. Similar to Bagging, Boosting uses

parts of samples to train classifiers as well, but not randomly. Difficult samples have a

greater probability of being selected, and easier samples have less chance of being used

for training. The cardinality of Random Subspaces is set under the condition that all clas-

sifiers have recognition rates of more than 50%.

The three different classification algorithms used in our experiments are K-Nearest Neigh-

bor Classifiers (KNN), Parzen Windows Classifiers (PWC) and Quadratic Discriminant

Classifiers (QDC) (19). For each of 6 databases and for each of 3 classification algo-

rithms, 10 classifiers were generated to constitute the pool of classifiers. We used different

dynamic selection schemes to select ensembles from the pools of 10 classifiers, and then

combined these ensembles with the simple Majority Voting Rule (MAJ).
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Table XVI

UCI data for ensembles of classifiers. Tr = Training Samples; Ts = Test Samples;
RS-Card. = Random Subspace Cardinality; Bagging = Proportion of samples used for

Bagging; Boost = Proportion of samples used for Boost

Database Classes Tr Ts Features RS-Card. Bagging Boosting

Liver-Disorders (LD) 2 172 172 6 4 66 % 66 %
Pima-Diabetes (PD) 2 384 384 8 4 66 % 66 %

Wisconsin Breast-Cancer (WC) 2 284 284 30 5 66 % 66 %
Wine (W) 3 88 88 13 6 66 % 66 %

Image Segmentation (IS) 7 210 2100 19 4 66 % 66 %
Letter Recognition (LR) 26 10000 10000 16 12 66 % 66 %

5.3.2 Random Subspace

The Random Subspace method creates diverse classifiers by using different subsets of

features to train classifiers. Due to the fact that problems are represented in different

subspaces, different classifiers develop different borders for the classification.

For Random Subspace, we observe that KNORA-UNION and LCA have more stable

performances than other methods. We also observe that the A Priori and A Posteriori

methods are not necessarily better than OLA or LCA. This means that the probabilities

weighted by the Euclidean distances between the test pattern and validation patterns are

not always useful for dynamic classifier selection.

Similarly, we note that KNORA-UNION-W is not always better than KNORA-UNION.

More interestingly, KNORA-ELIMINATE-W and KNORA-ELIMINATE have the same

performances on Random Subspaces. This indicates that the probabilities weighted by

the Euclidean distances between the test pattern and validation patterns do not affect the

decisions of KNORA-ELIMINATE on Random Subspaces.
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Table XVII

Dynamic Selection results for Random Subspace using KNN classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 78.47 % 78.47 % 80.56 % 84.03 % 77.78 % 70.14 % 79.17 % 70.83 % 100.00 % 76.39 % 74.31 %
PD 97.54 % 97.54 % 96.83 % 96.48 % 94.37 % 93.66 % 96.83 % 93.66 % 98.25 % 96.13 % 96.83 %
WC 93.66 % 93.66 % 94.37 % 93.66 % 90.85 % 80.99 % 93.31 % 88.38 % 99.65 % 92.61 % 95.07 %
W 97.73 % 97.73 % 97.73 % 97.73 % 97.73 % 37.50 % 97.73 % 97.73 % 97.73 % 76.14 % 90.91 %
IS 78.29% 78.29% 78.67% 78.62% 75.81% 60.90% 75.43% 59.62 % 97.29 % 78.19 % 84.14 %
LR 83.33% 83.33% 83.85% 84.20% 84.84% 87.02% 84.84% 87.24% 94.78 % 83.08 % 85.32 %

Table XVIII

Dynamic Selection results for Random Subspace using Parzen classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 71.53 % 71.53 % 72.22 % 75.00 % 75.00 % 65.28 % 71.53 % 67.36 % 89.58 % 70.83 % 75.00%
PD 82.82 % 82.82 % 82.03 % 82.29 % 81.51 % 65.63 % 80.99 % 77.08 % 92.19 % 78.12 % 79.69 %
WC 92.96 % 92.96 % 92.96 % 92.96 % 91.20 % 83.10 % 93.31 % 87.68 % 98.94 % 91.55 % 92.96 %
W 88.64% 88.64% 81.82% 89.77% 87.50% 84.09% 89.77% 90.91 % 100.00 % 76.14 % 88.71%
IS 79.90% 79.90% 80.05% 80.19% 78.10% 64.90% 77.76% 64.76 % 98.48 % 79.62 % 85.38%
LR 89.07% 89.07% 89.68% 89.81 % 90.51% 88.43% 90.51% 88.49 % 96.70 % 89.52 % 90.61%

5.3.3 Bagging

Bagging generates diverse classifiers by randomly selecting subsets of samples to train

classifiers. Intuitively, we can see that classifiers will have different behaviors based on

different sample subsets.

For Bagging, we note that KNORA-ELIMINATE, KNORA-UNION and LCA have good

performances. As with Random Subspaces, A Priori and A Posteriori are not necessar-



126

Table XIX

Dynamic Selection results for Random Subspace using QDC classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 63.89 % 63.89 % 61.11 % 70.19 % 61.81 % 70.14 % 65.28 % 68.06 % 88.19 % 57.64 % 64.58%
PD 80.21 % 80.21 % 80.21 % 80.21 % 79.69 % 63.28 % 80.21 % 75.26 % 93.23 % 77.86 % 79.43 %
WC 95.42 % 95.42 % 95.07 % 95.07 % 92.25 % 88.03 % 95.42 % 90.85 % 99.65 % 93.66 % 96.48 %
W 98.86% 98.86% 97.73% 98.86% 97.73% 96.59% 97.73% 95.45 % 100.00 % 96.59 % 96.77 %
IS 83.29% 83.29% 81.76% 82.19% 83.14% 39.52% 84.19% 37.76 % 95.29 % 78.24 % 83.24 %
LR 83.97% 83.97% 84.62% 85.00% 81.96% 85.99% 81.96% 86.73 % 93.40 % 84.36 % 82.44 %

Table XX

Dynamic Selection results for Bagging using KNN classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 59.03% 59.03% 60.42% 60.42% 58.33% 60.42% 59.03% 59.72 % 79.17 % 60.42 % 63.19 %
PD 74.22% 74.22% 74.74% 74.74% 73.70% 72.92% 74.22% 72.92 % 90.10 % 75.00 % 75.26 %
WC 94.72% 94.72% 93.66% 94.01% 93.31% 92.96% 94.72% 93.31 % 96.83 % 93.66 % 94.72 %
W 73.86% 73.86% 73.86% 73.86% 75.00% 73.86% 73.86% 73.86 % 81.82 % 72.73 % 73.86 %
IS 87.67% 87.67% 87.67% 87.67% 86.67% 85.24% 86.52% 87.67 % 93.19 % 86.24 % 84.57 %
LR 93.89% 93.89% 93.94% 93.94% 93.07% 93.97% 93.07% 94.05 % 97.64 % 93.76 % 92.33 %

ily better than OLA or LCA on Bagging. Again, KNORA-UNION-W is not always better

than KNORA-UNION. This indicates that the probabilities weighted by the Euclidean dis-

tances between the test pattern and validation patterns do not always contribute to higher

classification rates for either dynamic classifier selection or dynamic ensemble selection.

Still, KNORA-ELIMINATE-W and KNORA-ELIMINATE have the same performances

on Bagging.
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Table XXI

Dynamic Selection results for Bagging using Parzen classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 67.36% 67.36% 66.67% 68.75% 68.06% 61.81% 67.36% 62.50 % 94.44 % 65.28 % 68.06%
PD 74.74% 74.74% 72.40% 71.88% 73.70% 74.22% 74.22% 74.48 % 84.64 % 71.88 % 72.40%
WC 94.72% 94.72% 93.31% 93.31% 93.31% 92.61% 95.07% 92.61 % 97.18 % 91.90 % 94.01%
W 73.86% 73.86% 73.86% 73.86% 76.14% 73.86% 76.14% 73.86 % 85.23 % 71.59 % 73.86%
IS 84.62% 84.62% 82.90% 82.95% 84.43% 82.14% 83.76% 84.43 % 89.90 % 80.00 % 81.76%
LR 94.51% 94.51% 94.56% 94.58% 93.72% 94.17% 93.72% 94.22 % 97.63 % 94.33 % 92.99%

Table XXII

Dynamic Selection results for Bagging using QDC classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 70.83% 70.83% 63.89% 66.67% 68.75% 61.11% 70.14% 62.50 % 91.67 % 56.94 % 68.75
PD 74.22% 74.22% 74.48% 73.96% 73.70% 72.66% 74.48% 72.92 % 83.85 % 73.96 % 74.22 %
WC 97.89% 97.89% 96.83% 96.83% 97.54% 98.94% 97.54% 99.30 % 100.00 % 96.83 % 98.24%
W 100.00 % 100.00% 98.86% 98.86% 94.32% 94.32% 94.32% 95.45 % 100.00 % 97.73 % 96.59 %
IS 100.00 % 100.00% 99.14% 97.33 % 100.00% 91.29 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00%
LR 89.70% 89.70% 89.01% 88.99% 89.64% 91.04% 89.61% 91.29 % 92.81 % 88.47 % 88.21%

5.3.4 Boosting

Boosting uses a part of the samples to train classifiers, but not randomly. As stated above,

difficult samples have higher probability of being selected, and easier samples have less

chance of being used for training. With this mechanism, most of the classifiers created

will focus on hard samples and can be more effective.
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For Boosting, KNORA-ELIMINATE, KNORA-UNION and LCA seem to be quite stable.

We observe the same situations as for Random Subspaces and Bagging: the A Priori and

A Posteriori methods are not necessarily better than OLA or LCA; KNORA-UNION-W

is not always better than KNORA-UNION, and KNORA-ELIMINATE-W and KNORA-

ELIMINATE have the same performances.

However, these results cannot discount the usefulness of the probabilities weighted by the

Euclidean distances between the test pattern and validation patterns, because, in many

problems, the number of samples is quite small. Moreover, since there are only 10 clas-

sifiers in a pool, there are not many choices for either dynamic classifier selection or

dynamic ensemble selection. This might also be a reason why KNORA-ELIMINATE and

KNORA-ELIMINATE-W have the same performances.

Although the experiments suggest that the four KNORA schemes proposed for dynamic

ensemble selection might be applicable in various ensemble creation methods – such as

Random Subspace, Bagging and Boosting – the problems extracted from the UCI machine

learning repository usually consist of a small number of samples with few features. Fur-

thermore, given these constraints, the classifier pool is composed of only 10 classifier in

our experiment, which makes the results less convincing. As a result, we were able to

justify the need to carry out a larger scale experiment on a problem with more features

and larger classifier pools. This is why we conducted our next experiment on a 10-class

handwritten-numeral problem with 132 features and 100 classifiers.

5.4 Experiments for Dynamic Selection on Handwritten Numerals

5.4.1 Experimental Protocol for KNN

Our experiments were carried out on a 10-class handwritten-numeral problem. The data

were extracted from NIST SD19, essentially as in (99), based on the ensembles of KNNs

generated by the Random Subspaces method. We used nearest-neighbor classifiers (K =
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Table XXIII

Dynamic Selection results for Boosting using KNN classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 66.67% 66.67% 64.58% 65.28% 65.97% 64.58% 65.28% 65.28 % 90.28 % 62.50 % 62.50 %
PD 72.14% 72.14% 71.88% 71.09% 73.44% 73.44% 75.00% 73.44 % 91.67 % 71.09 % 72.14%
WC 95.77% 95.77% 95.42% 96.13% 95.42% 94.72% 94.37% 95.42 % 96.83 % 95.42 % 95.42%
W 73.86% 73.86% 73.86% 73.86% 73.86% 73.86% 73.86% 76.14 % 78.41 % 71.59 % 73.86 %
IS 86.57% 86.57% 86.57% 86.57% 86.86% 86.71% 86.86% 87.67 % 90.00 % 86.43 % 87.67%
LR 93.57% 93.57% 93.79% 93.80% 92.76% 93.95% 92.75% 94.00 % 97.20 % 93.62 % 92.57%

Table XXIV

Dynamic Selection results for Boosting using Parzen classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 66.67% 66.67% 67.36% 72.92% 63.89% 63.89% 66.67% 68.06 % 100.00 % 65.97 % 63.89 %
PD 74.74% 74.74% 73.96% 73.18% 73.70% 71.61% 75.00% 73.18 % 99.74 % 72.40 % 73.18 %
WC 93.31% 93.31% 92.96% 92.96% 92.96% 92.96% 93.31% 92.96 % 94.72 % 92.96 % 92.96 %
W 80.68% 80.68% 77.27% 81.82% 78.41% 73.86% 79.55% 73.86 % 95.45 % 75.00 % 79.55 %
IS 84.19% 84.19% 83.33% 83.38% 84.90% 83.76% 84.90% 84.71 % 88.43 % 80.48 % 82.81 %
LR 94.03% 94.03% 94.07% 94.10% 93.02% 94.17% 92.95% 94.19 % 97.29 % 94.13 % 93.18 %

1) for KNN, each KNN classifier having a different feature subset of 32 features extracted

from the total of 132 features.

To evaluate the static ensemble selection and the dynamic ensemble selection schemes,

four databases were used: the training set with 5,000 samples (hsf_{0−3}) to create 100

KNN in Random Subspaces. The optimization set containing 10,000 samples (hsf_{0−

3}) was used for GA searching for static ensemble selection. To avoid overfitting during
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Table XXV

Dynamic Selection results for Boosting using QDC classifiers. KN-E =
KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W;. KN-U=

KNORA-UNION; KN-U-W= KNORA-UNION-W; a Pr = a Priori; a Post = a Posteriori;
SB = Single Best

KN-E KN-E-W KN-U KN-U-W a Pr. a Post. OLA LCA Oracle All SB

LD 73.61% 73.61% 77.08% 77.08% 70.14% 61.81% 73.61% 64.58 % 96.53 % 70.83 % 75.00%
PD 75.26% 75.26% 73.96% 74.48% 73.70% 73.18% 74.22% 73.96% 86.98 % 74.22 % 74.74%
WC 97.18% 97.18% 96.83% 97.18% 95.77% 97.89% 95.77% 97.89 % 98.59 % 96.83 % 97.89 %
W 96.59% 96.59% 96.59% 96.59% 96.59% 97.73% 96.59% 96.59 % 97.73 % 96.59 % 97.73%
IS 86.38% 86.38% 86.52% 86.48% 86.24% 86.43% 86.05% 86.57 % 90.00 % 86.43 % 87.67%
LR 93.54% 93.54% 93.69% 93.73% 92.63% 93.95% 92.61% 94.00 % 97.20 % 93.62 % 92.57%

GA searching, the selection set containing 10,000 samples (hsf_{0 − 3}) was used to

select the best solution from the current population according to the objective function

defined, and then to store it in a separate archive after each generation. Using the best

solution from this archive (86), the test set containing 60,089 samples (hsf_{7}) was

used to evaluate the EoC accuracies.

We need to address the fact that the classifiers used were generated with feature subsets

having only 32 features out of a total of 132. The weak classifiers can help us better

observe the effects of EoCs. If a classifier uses all the available features and all the training

samples, a much better performance can be observed (15; 14). But, since this is not

the objective of this chapter, we are focusing on the improvement of EoCs through the

optimization of performances by combining classifiers. The benchmark KNN classifier

uses all 132 features, and so, with K = 1, we can have 93.34% recognition rates. The

combination of all 100 KNN by simple MAJ gives 96.28% classification accuracy. The

possible upper limit of classification accuracy (the oracle) is defined as the ratio of samples

classified correctly by at least one classifier in a pool to all samples. The oracle is 99.95%

accurate for KNN.
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5.4.2 Static Ensemble Selection with Classifier Performance

The MVE was tested because of its reputation as one of the best objective functions in

selecting classifiers for ensembles (89). It directly evaluates the global EoC performance

by the MAJ. For this reason, we tested the MAJ as the objective function for static and

dynamic ensemble selection, as well as using it as the fusion function. We also tested the

mean classifier error (ME).

In Table XXVI, we observe that the MVE performs better than the ME as an objective

function for static ensemble selection. The ensemble selected by the MVE also outper-

forms that of all 100 KNNs.

Table XXVI

The recognition rates on test data of ensembles searched by GA with the Mean Classifier
Error, Majority Voting Error. ME = Mean Classifier Error; MVE = Majority Voting

Error; OF = Objective Functions

OF Min QL Median QU Max

ME 94.18 % 94.18 % 94.18 % 94.18 % 94.18 %

MVE 96.32 % 96.41 % 96.45 % 96.49 % 96.57 %

5.4.3 Dynamic Ensemble Selection

Even though the MVE has thus far been able to find the best ensemble for all the samples,

this does not mean that a single ensemble is the best solution for combining classifiers. In

other words, each sample may have a most suitable ensemble that is different from that

of the others. We intend to determine whether or not the use of different ensembles on

different samples can further increase the accuracy of the system.
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Table XXVII

The best recognition rates of proposed dynamic ensemble selection methods. RR=
Recognition Rates

KN-E KN-E-W KN-U KN-U-W

RR 97.52 % 97.52 % 97.25 % 97.25 %

K-value 7,8 7,8 1 1

Note that dynamic ensemble selection does not use any search algorithm for selecting the

ensemble, because each sample has its own ensemble for the classifier combination. As a

result, it was not necessary to repeat the search.

Figure 23 The performances of proposed dynamic ensemble selection schemes based
on different neighborhood sizes 1 ≤ k ≤ 30 on NIST SD19 database. In the
figure KNORA-ELIMINATE overlaps with KNORA-ELIMINATE-W, and
KNORA-UNION overlaps with KNORA-UNION-W
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For dynamic ensemble selection, only three databases were used: the training set with

5,000 samples (hsf_{0− 3}) to create 100 KNN in Random Subspaces, the optimization

set containing 10,000 samples (hsf_{0 − 3}) and the test set containing 60,089 samples

(hsf_{7}) to evaluate the EoC accuracies. We tested the four KNORA algorithms and

compared them with the other proposed schemes: OLA, LCA, and the A Priori and A

Posteriori local class accuracy methods.

Table XXVIII

The best recognition rates of each dynamic ensemble selection methods. RR=
Recognition Rates

KNORA-E OLA LCA a priori a posteriori

RR 97.52 % 94.11 % 97.40 % 94.12 % 97.40 %

K-value 7,8 30 1 30 1

We note that most of the dynamic schemes have so far proved better than all the tested

objective functions for static ensemble selection. The exceptions are OLA and the A Priori

method. Both LCA and the A Posteriori method achieved very good performances, with

97.40% recognition rates. But KNORA-ELIMINATE and KNORA-ELIMINATE-W have

good performances as well, and, with recognition rates of 97.52%, KNORA-ELIMINATE

and KNORA-ELIMINATE-W turned out to constitute the best dynamic selection scheme

for our handwritten-numeral problems (Table XXII).

However, KNORA-UNION and KNORA-UNION-W do not perform as well as KNORA-

ELIMINATE. They are still better than OLA and the A Priori method, but not as good as

LCA and the A Posteriori method (Fig. 23).

If we compare their performances in different neighborhood sizes, we note that, while the

LCA and A Posteriori dynamic selection schemes outperform static GA selection with

the MVE as the objective function in a small neighborhood, their performances declined
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Figure 24 The performances of various ensemble selection schemes based on different
neighborhood sizes 1 ≤ k ≤ 30 on NIST SD19 database. In the figure OLA
overlaps with a priori selection

with an increase in the value of k (Fig. 24). In this case, static GA selection with the

MVE may still be better than the LCA or A Posteriori dynamic selection schemes. By

contrast, KNORA-ELIMINATE has a more stable performance, even when the value of k

increases. It gives a better recognition rates than all the other schemes in our experimental

study, except when k = 1. But still, the stable performance of KNORA-ELIMINATE

suggests that the dynamic selection schemes are worthy of more attention.
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5.4.4 Effect of Validation Sample Size

Since all the traditional dynamic selection schemes and KNORA take into account the

neighborhood of the test pattern for classifier and ensemble selection, the size of the vali-

dation samples will have somewhat of an effect on these methods.

Figure 25 The performances of proposed dynamic ensemble selection schemes based
on different validation sample sizes from 1000 to 10000 on NIST SD19
database. The best performances from neighborhood sizes 1 ≤ k ≤
30 are shown. The classifier pool size is 100. In the figure KNORA-
ELIMINATE overlaps with KNORA-ELIMINATE-W, and KNORA-UNION
overlaps with KNORA-UNION-W

We thus varied the size of the validation samples from 1000 to 10000 samples, and mea-

sured the impact of the variation on these dynamic selection schemes. As the number of
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Figure 26 The performances of various ensemble selection schemes based on different
validation sample sizes from 1000 to 10000 on NIST SD19 database. The
best performances from neighborhood sizes 1 ≤ k ≤ 30 are shown. The
classifier pool size is 100. In the figure OLA overlaps with a priori selection,
and LCA overlaps with a posteriori selection

validation samples increases, a test pattern is more likely to have better nearest neighbors.

These nearest neighbors might also better distinguish truly useful classifiers from the pool.

Our results seem to confirm this supposition. When the validation sample size increases,

all four proposed KNORA methods show slight improvement (Fig. 25). However, for

the traditional dynamic selection schemes, the benefit to be derived from the increase in

validation samples seems to be less stable. We observe some fluctuations in classification
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accuracy on the four traditional dynamic selection schemes when the validation sample

size increases (Fig. 26).

Figure 27 The relationship between selected ensemble size and neighborhood size on
different validation sample sizes from 1000 to 10000 on NIST SD19 database
for KNORA-ELIMINATE. The classifier pool size is 100

The interesting point is that all four KNORA methods demonstrate better performances

than other traditional dynamic selection schemes when the validation sample size is small.

Also note that the increase in sample size does not necessarily increase the selected en-

semble sizes (Fig. 27 & Fig. 28).
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Figure 28 The relationship between selected ensemble size and neighborhood size on
different validation sample sizes from 1000 to 10000 on NIST SD19 database
for KNORA-UNION. The classifier pool size is 100

5.4.5 Effect of Classifier Pool Size

The classifier pool size has a clear effect on the performances of the proposed KNORA

methods. While all four of these methods show improvement as the classifier pool size in-

creases, KNORA-ELIMINATE and KNORA-ELIMINATE-W show a better improvement

than KNORA-UNION and KNORA-UNION-W (Fig. 29). Compared with the traditional

dynamic selection schemes, we note that KNORA-ELIMINATE is apparently superior

to OLA and to the A Priori method, but it is not necessarily better than LCA or the A

Posteriori method (Fig. 30).
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Figure 29 The performances of proposed dynamic ensemble selection schemes based
on different classifier pool sizes from 10 to 100 on NIST SD19 database.
The best performances from neighborhood sizes 1 ≤ k ≤ 30 are shown.
The validation sample size is 10000. In the figure KNORA-ELIMINATE
overlaps with KNORA-ELIMINATE-W, and KNORA-UNION overlaps
with KNORA-UNION-W

It is clear that the increase in classifier pool size benefits all kinds of dynamic selection

methods, because more classifiers are available. Nevertheless, KNORA-ELIMINATE has

shown more improvement than other dynamic selection schemes. We note that, when there

are fewer than 70 classifiers in the pool, LCA and the A Posteriori method outperform

KNORA-ELIMINATE. By contrast, when there are more than 70 classifiers in the pool,

KNORA-ELIMINATE has a slightly better classification accuracy than LCA and the A

Posteriori method.
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Figure 30 The performances of various ensemble selection schemes based on different
classifier pool sizes from 10 to 100 on NIST SD19 database. The best
performances from neighborhood sizes 1 ≤ k ≤ 30 are shown. The
validation sample size is 10000. In the figure OLA overlaps with a priori
selection, and LCA overlaps with a posteriori selection

This is an interesting finding, since it indicates that the KNORA methods are better suited

to large classifier pools. Since problems extracted from the UCI machine learning repos-

itory use only relatively small classifier pools, this might be why KNORA is not always

better than the traditional dynamic selection schemes. Moreover, we also note that the

increase in sample size does lead to the increase in the selected ensemble sizes (Fig. 31 &

Fig. 32).
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Figure 31 The relationship between selected ensemble size and neighborhood size on
different classifier pool sizes from 10 to 100 on NIST SD19 database for
KNORA-ELIMINATE. The validation sample size is 10000

5.5 Discussion

In this chapter, we propose a new dynamic ensemble selection scheme which directly

applies the concept of the oracle on the validation set. Unlike other dynamic selection

methods which use the estimated best classifier for a certain data point, the K-nearest

oracle uses the EoCs that are estimated to be the best for dynamic ensemble selection.

In our study of handwritten numerals, the proposed method apparently outperforms the

static ensemble selection schemes such as the use of the MVE or the ME as the objective

function in a GA search. Using the GA search, the MVE can achieve 96.45% recog-
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Figure 32 The relationship between selected ensemble size and neighborhood size on
different classifier pool sizes from 10 to 100 on NIST SD19 database for
KNORA-UNION The validation sample size is 10000

nition rates, and ME 94.18%. Nevertheless, with 97.52% recognition rates, KNORA-

ELIMINATE is significantly better than the static ensemble selection methods evaluated.

We note that the OLA and A Priori dynamic selection schemes were not as good as the

static GA selection scheme with the MVE. The OLA takes into the account neither class

dependence nor the weighting of each classifier, while the A Priori method ignores class

dependence. Since our experiment has a high class dimension (10) and the ensemble pool

size is quite large (100), it is not surprising that they do not perform well.

We also observe that KNORA-UNION and KNORA-UNION-W perform less well than

KNORA-ELIMINATE or KNORA-ELIMINATE-W. This might be due to the extreme
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elitism in the behavior of the oracle. Since only very few classifiers can correctly classify

some difficult patterns, the increase in ensemble size does not lead to a better recogni-

tion rate. So, when the value of K increases, the performances of KNORA-UNION and

KNORA-UNION-W decline.

KNORA-ELIMINATE also performs slightly better than the other dynamic selection

schemes. The LCA and A Posteriori schemes can achieve recognition rates of 97.40%,

which is better than the other static methods, but not as good as KNORA-ELIMINATE.

However, the performance of KNORA-ELIMINATE is still far from the oracle, which can

achieve rates of 99.95%.

This might indicate that addressing the behavior of the oracle is much more complex than

applying a simple neighborhood approach, and that the task of figuring out its behavior

merely based on the pattern feature space is not an easy one.

Considering the effect of validation sample size, we note that all four KNORA methods

demonstrate much better performances than other traditional dynamic selection schemes

when the validation sample size is small. On the contrary, classifier pool size has an even

more dramatic effect on KNORA performances. In general, when there are few classifiers

in the pool, LCA and the A Posteriori method outperform the KNORA methods. However,

when the classifier pool size increases, KNORA seems to improve more than LCA and the

A Posteriori method. When a number of classifiers is given, KNORA seems to perform

better than either LCA or the A Posteriori method (Fig. 30).

Note that, for an ensemble of M KNN classifiers with N training samples and with total

features d and a cardinality of features c (size of fixed feature subspaces), we can first pre-

calculate the distance on each feature. This pre-calculation has the complexity O(d · N)

. After the pre-calculation, we only need to carry out the summation and the sorting

calculation, which have the complexity O(M · (c ·N + N log N) of the ensemble, rather

than the complexity O(d · N + N log N ) of a single KNN classifier. In our study, the
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best dynamic selection scheme is KNORA-ELIMINATE with the neighborhood size 7,

which used 76 classifiers on average, which means that its ensemble is 11.78 times more

complex than a single KNN classifier, including the pre-calculation cost. However, the

best performance of KNORA-ELIMINATE is 4.18% better than that of a single KNN

classifier.

Finally, we must emphasize that the purpose of this work is not to achieve the best hand-

written pattern recognition rate using dynamic selection, but to explore the potential ad-

vantages of dynamic selection that might suit the nature of the dynamic environment in

machine learning, such as incremental learning. In order to gain a better understanding

of the impact of dynamic selection, we use 100 KNN classifiers trained with only 5000

samples in our experimental study. The combination of these 100 KNN by simple MAJ

gives only a 96.28% recognition rate. Considering other classification methods applied in

the same data set, KNN trained with 150000 samples can achieve 98.57% accuracy, MLP

can achieve 99.16% accuracy (75), and the use of SVM can achieve a 99.30% recognition

rate with a pairwise coupling strategy and a 99.37% rate with the one-against-all strategy

(74). However, the use of weak classifiers can demonstrate more differences between vari-

ous ensemble selection schemes, which makes this a better option for comparing different

ensemble selection schemes.

5.6 Conclusion

We describe a methodology to dynamically select an ensemble for every test data point.

We find that by the direct use of the concept of the oracle, the proposed scheme apparently

gives better performances than static ensemble selection schemes such as GA with the

MVE as the objective function. Moreover, the proposed scheme also perform slightly

better than other dynamic selection methods in our study.

We show that a dynamic ensemble selection scheme can, in some cases, perform better

than some static ensemble selection methods. Furthermore, our study suggests that an en-
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semble of classifiers might be more stable than a single classifier in the case of dynamic

selection. Yet our method is limited by the uncertainty of the behavior of the oracle, since

the recognition rates achieved are still not close to those of the oracle. We believe that

this methodology can be greatly enhanced with theoretical studies on the connection be-

tween the feature subspaces and the classifier accuracies, the influence of geometrical and

topological constraints on the oracle, better statistical studies to quantify the uncertainty

of the oracle’s behavior and empirical studies in more real-world problems with various

ensemble generation methods.

Although we believe that this dynamic ensemble selection scheme is promising, like static

ensemble selection, it has some drawbacks. One of these disadvantages is that we need to

train some classifiers that might not be used. Since all classifiers are created based on data

subsets, we wonder whether we can just only do a data subset selection instead of classifier

selection. We thus propose a classifier-free ensemble selection at the next chapter.



CHAPTER 6

THE IMPLICATION OF DATA DIVERSITY FOR A CLASSIFIER-FREE

ENSEMBLE SELECTION IN RANDOM SUBSPACES

To select the best EoC from a pool of classifiers, the classifier diversity is considered one

of the most important properties. In general, the classifier diversity does not occur ran-

domly, but is generated systematically by different ensemble creation methods. By using

diverse data subsets to train classifiers, the ensemble creation methods can create diverse

classifiers for the EoC. In this work, we propose a scheme to measure the data diversity

directly from random subspaces and we explore the possibility of using the data diversity

directly to select the best data subsets for the construction of the EoC. The applicability is

tested on UCI machine learning problems and NIST SD19 handwritten numerals.

6.1 Introduction

In general, the classifiers created are stored in a pool of classifiers, however not all the

classifiers in this pool will be useful. To select the most pertinent classifiers from the

pool (5; 11; 61; 66; 80; 89; 101), we need to define an adequate objective function. This

objective function can be a fusion function, like the majority voting error (11; 66; 80; 89),

or simply the diversity among classifiers (30; 73).

The two key issues that are crucial to the success of an EoC routine are the following:

first, we need diversity for ensemble creation, because an EoC will not perform well with-

out it (56; 63; 66; 88; 89); and second, we need to select classifiers once they have been

created (11; 63; 66; 89), because not all the classifiers created are useful. However, the

routine: ensemble creation first, then ensemble selection, has some disadvantages, one

of them being additional classifier training. Since not all the classifiers created will be

used, time is spent in training classifiers that will not ultimately be used. Another is the

evaluation of high dimensional classifier combinations, since we need to evaluate different
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combinations of classifiers for ensemble selection after classifier training, and this eval-

uation will be very time-consuming in a large classifier pool. Hence, our question: Can

we select data subsets for ensemble creation directly, instead of performing the ensemble

creation/ensemble selection routine?

We assume that data subset selection might be feasible through the evaluation of the data

diversity of data subsets. We thus propose a data subset selection for the Random Sub-

spaces ensemble generation method (See appendix 1). Note that with this method data

points might have relatively different distributions in the feature subspaces. This means

that, by clustering these data points in different feature subspaces, we might have quite

diverse clustering partitions. Since clustering diversities measure the diversity of these

partitions, they give an indirect indication of the data diversity of the feature subspaces.

Here, we need to clarify the concept of clustering diversity. In general, it is meant to

help in the construction of a cluster ensemble, and has nothing to do with classifiers. A

cluster ensemble combines the results of several partitions and thus improves the quality

and robustness of partitions of data (17; 23; 24; 26; 67; 79; 82; 95; 97; 98). It has been

shown that more diverse cluster ensembles offer the potential for greater improvement

than do less diverse cluster ensembles (23), and that is why we use clustering diversity in

our study.

Given a pool of feature subsets, we use a clustering algorithm with fixed parameters to

form clusterings in feature subsets (Fig. 33). It is reasonable to assume that clustering

diversity between different feature subsets also indicates their data diversity (See appendix

5 and 6). This scheme will provide us with the following advantages:

a. By selecting the useful feature subsets, we can reduce the time needed for classifier

training for ensemble creation.
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Figure 33 The proposed classifier-free ensemble selection scheme is, in fact, a feature
subset selection in Random Subspaces. We carried out this feature subset
selection using clustering diversity as objective function. Note that the pre-
calculation of diversities is carried out once for all, while GA or MOGA
search are repeated from generation to generation

b. By evaluating the pertinent feature subsets, we can significantly reduce the search

space for ensemble selection.

c. Feature subset selection might be able to replace ensemble selection completely

for Random Subspaces in some circumstances, and offers de facto classifier-free

ensemble selection.

Our experimental results suggest that there is a strong correlation between classifier di-

versity and clustering diversity in Random Subspaces, and that clustering diversity does
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work for a classifier-free ensemble selection scheme. Here, we need to mention that the

proposed strategy would not work for the Bagging and Boosting ensemble generation

methods. Since Bagging and Boosting draw a certain proportion of the data points to train

classifiers, it is quite possible that the distributions of data points are rather similar. Con-

sequently, clustering these data points might not generate significantly different clustering

partitions. More importantly, since Bagging uses various data points for each classifier, it

is impossible for us to measure data diversity by clustering different parts of data points.

In the next section, we introduce general clustering diversity measures. In section 3, we

investigate the possibility of ensemble selection using clustering diversity measures on the

UCI machine learning repository. In section 4, we report the experiments we performed

on NIST SD19 handwritten numeral digits. Discussion is provided in section 5 and our

conclusion comprises the last section.

6.2 Clustering Diversity Measures

In general, given two clustering partitions, we can apply clustering diversity to measure

the diversity between the partitions. Since there is no class label available in clustering,

the concept of diversity based on correct/incorrect classification cannot be applicable for

clustering diversity, and another kind of approach will be needed. First, we introduce the

concept of clustering diversity from the framework defined in (72). For C data points,

suppose one clustering Ci groups these data points into I clusters, and another clustering

Ck groups them into K clusters, then the diversity between these two clusterings can be

deduced as follows:

6.2.1 Basic Concept of Clustering Diversity

For two clusterings, consider a contingency table (or confusion matrix) M as a I × K

matrix which describes the partitions of data points in these two clusterings. Consider the

ikth, 1 ≤ i ≤ I, 1 ≤ k ≤ K element in the contingency table M - let us call it block Mik-
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which represents data points grouped as a cluster by clustering Ci and also groups as a

cluster by clustering Ck. In other words, all the data points that are grouped into cluster ci

by clustering Ci and grouped into cluster ck by clustering Ck are located in the block Mik.

So, in this contingency table M , we can denote the number of data points in block Mik as

mik:

mik = |ci

⋂
ck| (6.1)∑

1≤i≤I

∑
1≤k≤K

mik = C (6.2)

We note that, given two clusterings, the complexity of the calculation of all mik is O(C ·

(I + K)). Once we have every element mik for contingency table M , we can use mik

to calculate the clustering diversity between clustering Ci and clustering Ck. Given that

we have C data points, we want to determine the relationship between these C·(C−1)
2

data

point pairs. We then classify the relationship of these C·(C−1)
2

data point pairs into four

different cases and count the numbers of occurrences of these cases:

a. C11: the number of data point pairs that are in the same cluster under both Ci and

Ck

b. C00: the number of data point pairs that are in different clusters under both Ci and

Ck

c. C10: the number of data point pairs that are in the same cluster under Ci, but not

under Ck

d. C01: the number of data point pairs that are in the same cluster under Ck, but not

under Ci
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Suppose that we have C points in total, then the following condition must be satisfied :

C11 + C00 + C10 + C01 =
C(C − 1)

2
(6.3)

To illustrate the meanings of Cij in Fig. 34 and Fig. 35, we carried out 2 clusterings on

4 data points. Note that these 4 data points mean 6 data point pairs. In Fig. 36, C11 = 1,

because the triangle and the rectangle are grouped together in the same clusters by both

clusterings. C10 = 2, because the star is grouped in the same cluster as the triangle and the

rectangle by one clustering, but into different clusters by another clustering. By a similar

analysis, we can observe that C10 = 0. C00 = 3, because the ellipse is considered to be in

a different cluster from the star, the triangle and the rectangle by both clusterings.

Figure 34 Illustration of 2 clustering partitions. The first clustering generates 2
partitions and the second clustering generates 3 partitions

While the direct calculation of C11, C00, C10, C01 could be very time-consuming - the com-

plexity is O(C(C−1)
2

) - this calculation can be greatly accelerated. In fact, all the values

C11, C00, C10, C01 can be quickly derived from the contingency table M using its element

mik.

Suppose there are mik data points in block Mik, then we can calculate the C11 value as

the data point pairs in this block, i.e. C11(Mik) = mik(mik−1)
2

. Consequently, the total
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Figure 35 The 2 partitions of the first clustering can be denoted as (M1k and M2k), and
those of the second clustering can be denoted as (Mi1, Mi2 and Mi3). All
data points are classified into Mik based on these partitions

Figure 36 Examples of the calculation of C11, C00, C10, C01 based on 4 data points and
thus 6 data point pairs

C11 value can be calculated as the sum of C11(Mik) from all these blocks, i.e. C11 =∑
1≤i≤I

∑
1≤k≤K C11(Mik):

C11 =
∑

1≤i≤I

∑
1≤k≤K

mik(mik − 1)

2
(6.4)

Using the eq. 6.2, we can write :

C11 =
(
∑

1≤i≤I

∑
1≤k≤K m2

ik)− C

2
(6.5)
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For C10 and C01, the calculation follows the same principle. It can be deduced that there

are ((
P

i mik)−mik)

2
data point pairs grouped in the same cluster by clustering Ci, but in

different clusters by clustering Ck. Consequently, we can arrive at a value for C10.

C10 =

∑
1≤i≤I

∑
1≤k≤K mik((

∑
i mik)−mik)

2
(6.6)

For C01, we can use the same method and get similar result.

C01 =

∑
1≤i≤I

∑
1≤k≤K mik((

∑
k mik)−mik)

2
(6.7)

The more complicated case is the deduction of C00, for which we should look for data

point pairs that are grouped in different clusters by both Ci and Ck clustering. Since there

are (C −
∑

k mik −
∑

i mik + mik) samples satisfying this condition, we can arrive at :

C00 =

∑
1≤i≤I

∑
1≤k≤K(mik · (C −

∑
k mik −

∑
i mik + mik))

2
(6.8)

The result can be verified by calculating C11 + C10 + C01 + C00 = C(C−1)
2

.

Remember that the complexity of the calculation of all mik is O(C · (I + K)). Given that

I, K � C, the calculation of C11, C00, C10, C01 deduced by mik is much faster than the

direct calculation of C11, C00, C10, C01, which had the complexity of O(C(C−1)
2

).

We need to mention that we fix all the clustering parameters, including the number of

clusters. In other words, in our case, I = K, and the contingency table M is, in fact, a

square matrix.

However, these four types of relationships of data point pairs are not themselves cluster-

ing diversity measures. In fact, several different clustering diversity measures have been

proposed using the counts of these four cases. We introduce them in the next section.



154

6.2.2 Pairwise Clustering Diversity Measures

Based on the pairwise counts, a number of clustering diversity measures are proposed

(72):

a. Wallace Indices

Wallace− 1 : Wi(Ci, Ck) =
C11

C11 + C10

(6.9)

Wallace− 2 : Wk(Ci, Ck) =
C11

C11 + C01

(6.10)

b. Fowlkes-Mallows Index

F (Ci, Ck) =
C11

((C11 + C10)(C11 + C01))
1
2

= (Wi(Ci, Ck)Wk(Ci, Ck))
1
2 (6.11)

c. Rand Index

R(Ci, Ck) =
C11 + C00

C(C−1)
2

(6.12)

d. Jacard Index

J(Ci, Ck) =
C11

C11 + C01 + C10

(6.13)

e. Mirkin’s Metric

K(Ci, Ck) = 2(C10 + C01) = C(C − 1)[1−R(Ci, Ck)] (6.14)
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Note that all these measures calculate the clustering diversity between two clusterings. In

the case where there are more than two clusterings, the global clustering diversity is simply

the mean of all clustering diversities between all clustering pairs. Given L clusterings,

there are L×(L−1)
2

clustering diversities d12, d13, ..., d(L−1)L to be calculated, and the global

clustering diversity d̄ will be its average :

d̄ = 2×
∑

ij dij

L× (L− 1)
, i ≤ j (6.15)

Now we want to check whether or not the clustering diversity of different feature subsets

can be used as an objective function for classifier-free ensemble selection, and so we

carried out the experiments on the UCI machine learning problems (see below).

6.3 Evaluation of Objective Functions for Ensemble Selection on the UCI Machine

Learning Repository

First, we need to evaluate the hypothesis that the clustering diversity of different feature

subsets can be used as an objective function for ensemble selection in Random Subspaces.

For an ensemble created with the Random Subspaces method, we first evaluated its fea-

ture subspaces by carrying out simple K-Means clusterings with predefined numbers of

clusters on these feature subsets. The number of clusters is preselected using the Xie-Beni

index (XB index) (4; 45) as the clustering validity index. A clustering diversity was thus

calculated based on the clusterings of these feature subsets, and served as an objective

function for the search. Six various clustering diversities were tested in our experiment,

including: Mirkin’s Metric, two Wallace Indices, the Fowlkes-Mallows Index, the Rand

Index and the Jacard Index. As we mentioned in the introduction, the search algorithm

is also an important issue for ensemble selection. For the classifier-free ensemble selec-

tion scheme, we evaluate two types of search algorithms: the single genetic algorithm

(GA) and the multi-objective genetic algorithm (MOGA). We used the GA because, as

a population-based search algorithm, it is flexible and its complexity can be adjusted ac-
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cording to the size of the population and the number of generations. Moreover, because

the algorithm returns a population of the best combinations, it can be potentially exploited

to prevent generalization problems (89). Once the feature subsets had been selected, we

constructed corresponding classifiers using the selected feature subsets and evaluated the

performance of the ensembles of these classifiers (see Fig. 37).

Figure 37 The processing steps of the proposed classifier-free ensemble selection
method. The selected ensembles of feature subsets can be used to train
ensembles of classifiers. These ensembles must be tested in a validation set
in order to select the best ensemble. The detailed part of "feature subset
selection" is shown on Fig. 33

At the same time, we need to compare our classifier-free ensemble selection scheme with

traditional classifier-based ensemble selection methods. For traditional classifier-based

ensemble selection, each feature subset was used to train a classifier, and all the trained

classifiers were stored in a pool. In order to select adequate classifiers from this pool,

we carried out the ensemble selection process using majority voting error (MVE) as the

objective function for the GA and MOGA search algorithms.
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We performed the classifier-free ensemble selection and classifier-based ensemble selec-

tion experiments on UCI machine learning problems (Table XXIX). Three classification

algorithms were used: Quadratic Discriminant Classifiers QDC), K-Nearest Neighbors

Classifiers (KNN) and Parzen Windows Classifiers (PWC) (19) for the classification tasks.

Table XXIX

The problems extracted from the UCI Machine Learning Data Repository

database number of number of number of number of number of number of
classes clusters train samples test samples features cardinality

Pima-Diabetes 2 3 384 384 8 4
Liver-Disorders 2 5 144 144 6 3

Wisconsin Breast-Cancer 2 12 284 284 30 5
Wine 3 4 88 88 13 6

Image Segmentation 7 53 210 2100 19 4
Letters Recognition 26 87 10000 10000 16 12

All the problems extracted from the UCI have two datasets, a training set for classifier

training for the GA or MOGA search, and a test set used only for testing. The whole

training set was used to create 10 classifiers in Random Subspaces. Moreover, the training

samples were divided into 3 parts for each scheme:

• Optimization set:

70% of the training samples were used for the GA or MOGA search. These sam-

ples were clustered in feature subspaces, and the clustering diversity indices were

measured by comparing clusterings in a pairwise manner. The diversity of a set

of feature subspaces is calculated as the mean value of pairwise diversities of the

features involved (eq. 6.15).

• Archive validation set:

Another 15% of the training samples were used as the archive validation mechanism

(86) to avoid overfitting during the GA or MOGA search. They were used to eval-

uate all the individuals and then to store the optimal solutions in a separate archive



158

after each generation (Fig. 38). The reason for using this archive validation mech-

anism is that solutions found in a pareto front of one dataset may be optimal only

for this special search dataset. From generation to generation, the solutions found

may tend to overfit the search dataset. To make sure that the solutions found were

not overfitted in our case, we validated them in another archive validation set. The

solutions are stored in the archive only if they dominate all solutions in the archive

validation set.

• Classifier-free MOGA evaluation set:

The last 15% of the training samples were used solely for the final classification

performance validation for the classifier-free MOGA search. The reason for this

was that, unlike the GA search, which gives the best individual in the population, a

MOGA search gives a group of individuals, called a pareto front. As a result, we

need a means to evaluate the solutions found in this pareto front. Even though a

MOGA search is a purely classifier-free process, the evaluation of these potential

solutions will require the construction of classifiers. So, during this process, the

feature subset candidates stored in the archive are then used to construct ensembles

and their performances evaluated on these samples.

• Test set:

The best solutions found were evaluated on the test set.

The classifier-free GA search used the clustering diversities calculated from the optimiza-

tion set to search for feature subspaces with the maximum clustering diversity. During the

search, solutions found in each generation were evaluated with clustering diversity in the

archive validation set and stored in an archive. Finally, solutions stored in the archive were

used on a test set.

The classifier-free MOGA search follows the same procedure as the classifier-free GA

search, except that the classifier-free MOGA search has two objective functions: max-
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imization of clustering diversity and maximization of the number of feature subspaces.

We will discuss in the next section the reason why the number of feature subspaces is

to be maximized. Moreover, since the classifier-free MOGA search provides a group of

solutions instead of one solution as in the classifier-free GA search, we needed to evalu-

ate the solutions stored in the archive. We trained an EoC using subspaces found by the

classifier-free MOGA search. These EoCs were then evaluated in a classifier-free MOGA

evaluation set. The best ensemble was then used on a test set.

The classifier-based GA search first constructed all the classifiers using the training set,

and then used mean ME or MVE evaluated on the optimization set to search for EoCs

with the ME or MVE. Again, during the search, solutions found in each generation were

evaluated in the archive validation set and stored in an archive. Finally, solutions stored in

the archive were used on a test set.

The classifier-based MOGA search also constructed all the classifiers using the training

set, and then used the ME or MVE evaluated on the optimization set to search for EoCs

with the ME or MVE. However, in order to compare this search with the classifier-free

MOGA search, it also used the maximization of the number feature subspaces as another

objective function. Following the MOGA search, the best solution was selected as the

individual at the pareto front with the minimum error rate. This solution was then used

on a test set. Because the error rate had already been evaluated during the search, the

classifier-based MOGA search did not need to use an external evaluation set for the final

evaluation as was done in the classifier-free MOGA search.

We first carried out the experiments with a single GA search, and then we compared the

results with those of a MOGA search.
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Figure 38 The archive validation set is used to validate the population found by GA or
MOGA and then stores the best solutions in a separate archive

6.3.1 Search with the Single Genetic Algorithm

For classifier-free ensemble selection (or feature subset selection), we used different clus-

tering diversity indices as objective functions to find the potentially adequate feature sub-

sets. Among these objective functions, we minimized two Wallace indices, the Fowlkes-

Mallows index, the Rand index, the Jacard index and the maximized Mirkin Metric. All

the global clustering diversity measures are calculated as the mean values of clustering

diversities between all clustering pairs. Note that the clustering diversity between any two

clustering pairs can be calculated prior to the GA search, so that during the GA search

we simply calculate the mean of the clustering diversities among selected clusterings. For

each of 6 problems extracted from the UCI, 10 feature subsets with fixed cardinality are

given as the pool for the search (see Table XXIX). Using the pre-calculated clustering

diversities based on the clusterings with these feature subsets, the GA search evaluated

the global diversity of various combinations of these feature subsets. The combination

of these feature subsets with the best global diversity was regarded as the best solution,

and then the selected feature subsets were used to construct the needed classifiers. These

classifiers were then combined using the MAJ fusion function to give the classification

results.
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Table XXX

The average recognition rates of KNN classifiers selected by GA with different objective
functions. The average ensemble sizes of MVE and ME are shown in the parenthesis

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 79.77 ±1.73 % 76.61 ± 1.74 % 77.37 ±1.85 % 78.32 ± 2.59 % 77.22 ± 2.85 %
Liver-Disorders 72.11 ± 2.45 % 70.35 ± 3.49 % 72.01 ± 3.06 % 70.39 ± 4.33 % 69.00 ± 3.68 %

Wisconsin Breast-Cancer 92.18 ± 0.70 % 89.19 ± 4.77 % 89.71 ± 4.21 % 89.67 ± 4.71 % 91.73 ± 0.84 %
Wine 75.61 ± 5.71 % 73.52 ± 1.98 % 73.60 ± 2.58 % 74.05 ± 3.70 % 71.82 ± 4.71 %

Image Segmentation 74.78 ± 2.31 % 76.87 ± 3.63 % 77.29 ± 2.96 % 78.28 ± 2.10 % 75.29±1.79 %
Letters Recognition 82.17 ±0.85 % 76.48 ± 3.36 % 78.11 ± 3.90 % 77.12 ± 4.33 % 77.85 ±3.35 %

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 81.35 ± 1.64 % 79.85 ± 2.36 % (3.97) 79.57 ± 2.20 % (3.83) 82.55 ± 0.00 % 98.18 %
Liver-Disorders 72.11 ± 2.94 % 73.91 ± 2.89 % (4.07) 72.29 ± 2.73 % (3.67) 76.39 ± 0.00 % 100.00 %

Wisconsin Breast-Cancer 91.97 ± 3.69 % 92.10 ± 1.98 % (3.73) 92.55 ± 0.85 % (4.20) 92.61 ± 0.00 % 99.65 %
Wine 72.42 ± 2.29 % 72.50 ± 1.39 % (3.63) 75.00 ± 3.54 % (3.93) 76.14 ± 0.00 % 97.73 %

Image Segmentation 78.47 ± 2.68 % 72.85 ± 1.42 % (4.03) 75.33 ± 4.21 % (3.97) 78.19 ± 0.00 % 97.29 %
Letters Recognition 76.37 ± 3.80% 79.99 ± 2.27% (4.37) 79.25 ± 3.00% (3.90) 83.08 ± 0.00 % 94.78 %

Table XXXI

The average recognition rates of QDC classifiers selected by GA with different objective
functions. The average ensemble sizes of MVE and ME are shown in the parenthesis

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 76.05 ± 1.53 % 72.74 ± 2.56 % 74.84 ± 4.16 % 74.00 ± 2.80 % 72.86 ± 3.00 %
Liver-Disorders 59.51 ± 0.45 % 57.11 ± 2.67 % 58.12 ± 2.54 % 57.15 ± 3.34 % 59.91 ± 1.48 %

Wisconsin Breast-Cancer 95.21 ± 1.11 % 91.50 ± 2.03 % 92.50 ± 2.23 % 91.54 ± 1.15 % 93.22 ± 1.94 %
Wine 95.45 ± 1.08 % 95.76 ±1.26 % 93.98 ± 2.82 % 92.73 ± 3.55 % 92.84 ± 3.75 %

Image Segmentation 72.03 ± 15.40 % 69.85 ± 13.19 % 67.59 ± 15.43 % 74.34 ± 9.29 % 72.89 ± 12.09 %
Letters Recognition 82.53 ± 0.97 % 82.71 ± 1.03 % 82.36 ± 1.11 % 82.57 ± 1.50 % 82.71 ± 0.88%

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 75.92 ± 1.60 % 75.49 ± 2.46 % (4.30) 74.34 ± 2.65 % (3.83) 77.86 ± 0.00 % 93.23 %
Liver-Disorders 58.63 ± 2.01 % 57.15 ± 2.26% (4.23) 56.99 ± 2.70 % (4.17) 57.64 ± 0.00% 88.19 %

Wisconsin Breast-Cancer 91.55 ± 1.40 % 93.57 ± 2.06 % (3.80) 93.69 ± 1.48 % (4.07) 93.66 ± 0.00 % 99.65 %
Wine 93.30 ± 3.71 % 92.61 ± 1.75 % (4.43) 95.00 ± 2.44 % (4.00) 96.59 ± 0.00 % 100.00 %

Image Segmentation 73.23 ± 12.31 % 60.59 ± 12.92% (3.80) 57.27 ± 15.65 % (4.20) 78.24 ± 0.00 % 95.29 %
Letters Recognition 82.46 ± 1.52 % 81.13 ± 2.37% (3.80) 84.10 ± 0.00 % (9.00) 84.36 ± 0.00 % 93.40 %

In order to compare the performance of the classifier-free approach with the traditional

classifier-based approach, we also evaluated the single GA search with MVE and with ME

as the objective functions. For these two schemes, classifiers were constructed using given
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Table XXXII

The average recognition rates of the ensembles of PARZEN WINDOWS classifiers
selected by GA with different objective functions. The average ensemble sizes of MVE

and ME are shown in the parenthesis

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 78.28 ± 1.52 % 73.87 ± 2.94 % 77.87 ± 2.56 % 76.22 ± 3.67 % 75.44 ± 3.16 %
Liver-Disorders 70.02 ±2.06 % 61.34 ± 2.95 % 63.54 ± 4.06 % 62.85 ± 5.17 % 68.12 ± 3.30 %

Wisconsin Breast-Cancer 90.77 ± 1.14 % 90.16 ± 1.12 % 89.51 ± 1.51 % 90.18 ±1.48 % 90.96 ± 0.31 %
Wine 81.40 ± 4.89 % 76.74 ± 2.31 % 75.80 ± 3.06 % 76.63 ± 3.79 % 75.72 ± 5.32 %

Image Segmentation 74.91 ± 4.20 % 72.68 ± 7.67 % 76.89 ± 2.68 % 76.73 ± 5.98 % 72.51± 7.72%
Letters Recognition 89.00 ± 0.52 % 88.46 ± 1.05 % 88.23 ± 1.01 % 88.37 ± 1.26 % 88.54 ±0.76 %

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 78.31 ± 1.75 % 77.74 ± 2.21 % (4.13) 78.19 ± 1.88 % (4.03) 78.12 ± 0.00 % 92.19 %
Liver-Disorders 63.06 ± 4.94 % 66.76 ±4.07 % (3.80) 67.87 ± 3.77% (4.07) 70.83 ± 0.00 % 89.58 %

Wisconsin Breast-Cancer 90.85 ± 1.18 % 90.99 ± 1.39 % (4.10) 87.88 ± 1.66 % (3.87) 91.55 ± 0.00 % 98.94 %
Wine 76.14 ± 4.29 % 79.47 ± 4.25 % (3.97) 79.36 ± 5.07 % (4.23) 76.14 ± 0.00 % 100.00 %

Image Segmentation 79.61 ± 4.43 % 75.60 ± 5.13 % (4.57) 75.31 ± 4.97 % (4.13) 79.62 ± 0.00 % 98.48 %
Letters Recognition 88.41 ± 1.34 % 87.00 ± 1.68 % (3.80) 89.29 ± 0.00 % (9.00) 89.52 ± 0.00 % 96.70 %

feature subset pools, and the GA search evaluated the results directly from the classifier

outputs, regardless of the clustering diversities of their feature subsets. For MVE, the

ensembles were selected for the minimum ensemble errors; and for ME, the ensembles

were chosen for the minimum average of the individual classifier error. All classifiers

were combined using MAJ as the fusion function.

For the single GA search, we set 32 individuals in the population with 500 generations.

The mutation rate was set to 1
L

, where L is the length of the mutated binary string (21),

and the crossover probability was set to 50%. A threshold of 3 classifiers was applied as

the minimum number of classifiers for the EoC during the whole search. The experiments

were repeated 30 times for statistical evaluation.

We note that, in general, the MVE, and even the ME, have much better performances than

all the other clustering diversity indices (Table XXX ∼ XXXII). This is not surprising,

since the clustering diversity indices do not take into account the classifier outputs. In

our experiments, ME does not converge into the minimum ensemble size, but we found
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that several ensembles can achieve the same ME, which explains why ME could have

ensemble sizes that are larger than the minimum. This is reasonable, because the pool

consists of only 10 classifiers. Moreover, given that all GA searches with the clustering

diversity indices converge to the minimum number of classifiers (fixed to 3 classifiers

in our experiments), it is understandable that the single GA search with the clustering

diversity indices underperforms.

Given that we are not only looking for the optimum performances from these clustering

diversity indices, but also a pre-selection for the more refined ensemble selection methods,

this convergence of the single GA is not desirable. In order to resolve the problem of

convergence into the minimum ensemble size, we carried out a MOGA search in our next

experiment.

6.3.2 Search with the Multi-Objective Genetic Algorithm

As we can observe from the single GA search, the use of pairwise diversity as an objec-

tive function has a technical problem: the search algorithm will converge to the minimum

number of feature subsets (and hence the minimum size of the ensemble) with the max-

imum clustering diversity, which means that the search algorithm systematically prefers

the smaller ensembles to bigger ones (58). It turns out that, in effect, we will encounter

two problems if we use pairwise diversities. So, aside from optimizing the diversity, we

should, at the same time, avoid minimizing the number of feature subsets.

Given the challenges posed by ensemble selection, the prospect of satisfying multi-

objective problems makes the MOGA a desirable alternative. We thus define two ob-

jectives for the search: the optimization of diversity (and hence the minimization of two

Wallace indices, the Fowlkes-Mallows index, the Rand index, the Jacard index and the

maximization of Mirkin’s Metric) and the maximization of the number of feature subsets.

Although we only care about diversity, maximizing the number of feature subsets can pre-
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vent the search from converging into the minimal number of feature subsets (and hence

the minimum size of the ensemble).

Table XXXIII

The average recognition rates of the ensembles of KNN classifiers selected by MOGA
with different objective functions on problems extracted from the UCI machine learning

repository

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 80.10 ± 2.03 % 77.87 ± 1.18 % 79.07 ± 2.56 % 79.96 ± 1.77 % 79.13 ± 1.90 %
Liver-Disorders 72.78 ± 2.97 % 74.08 ± 2.83 % 74.26 ± 2.53 % 71.93 ± 3.54 % 72.94 ± 3.10 %

Wisconsin Breast-Cancer 92.28 ± 1.82 % 92.78 ± 1.96 % 92.18 ± 1.26 % 92.30 ± 2.05 % 91.99 ± 2.01 %
Wine 74.47 ± 2.40 % 74.94 ± 2.30 % 74.33 ± 1.67 % 75.58 ± 3.51 % 75.44 ± 3.63 %

Image Segmentation 74.80 ± 5.08 % 75.47 ± 4.66 % 75.04 ± 3.60 % 75.72 ± 3.03 % 74.89 ± 3.68 %
Letters Recognition 79.13 ± 2.92 % 80.10 ± 2.74 % 80.45 ± 1.29 % 80.89 ± 1.48 % 78.98 ± 3.50 %

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 79.91 ± 1.87 % 79.33 ± 2.12 % 79.48 ± 2.06 % 82.55 ± 0.00 % 98.18 %
Liver-Disorders 74.01 ± 2.47 % 74.07 ± 3.56 % 73.79 ± 2.92 % 76.39 ± 0.00 % 100.00 %

Wisconsin Breast-Cancer 88.87 ± 1.79 % 92.48 ± 0.95 % 92.46 ± 1.28 % 92.61 ± 0.00 % 99.65 %
Wine 76.29 ± 3.04 % 75.51 ± 2.84 % 74.27 ± 2.74 % 76.14 ± 0.00 % 97.73 %

Image Segmentation 75.55 ± 4.94 % 74.16 ± 3.67 % 74.11 ± 4.00 % 78.19 ± 0.00 % 97.29 %
Letters Recognition 80.10 ± 2.14 % 80.30 ± 2.29 % 77.59 ± 3.82 % 83.08 ± 0.00 % 94.78 %

Table XXXIV

The average ensemble sizes of KNN classifiers selected by MOGA with different
objective functions on problems extracted from the UCI machine learning repository

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 4.33 4.27 4.33 5.00 4.02
Liver-Disorders 3.69 4.29 4.16 4.06 4.27

Wisconsin Breast-Cancer 3.92 4.12 3.70 4.19 4.24
Wine 4.47 4.28 3.66 4.47 3.93

Image Segmentation 3.67 4.31 4.50 4.47 4.33
Letters Recognition 4.00 4.00 4.31 4.47 3.67

Jacard M.V.E M.E. ALL
Pima-Diabetes 4.43 4.16 4.29 10.00
Liver-Disorders 3.99 4.02 3.95 10.00

Wisconsin Breast-Cancer 4.23 4.26 3.87 10.00
Wine 4.83 4.24 3.60 10.00

Image Segmentation 4.83 4.24 3.60 10.00
Letters Recognition 4.39 4.21 3.38 10.00
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Table XXXV

The average recognition rates of the ensembles of QDC classifiers selected by MOGA
with different objective functions on problems extracted from the UCI machine learning

repository

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 75.89 ± 2.62 % 75.08 ± 3.48 % 76.03 ± 2.20 % 74.97 ± 2.65 % 74.69 ± 2.68 %
Liver-Disorders 56.88 ± 2.50 % 57.41 ± 2.31 % 56.93 ± 2.24 % 57.17 ± 3.13 % 57.56 ± 3.06 %

Wisconsin Breast-Cancer 93.62 ± 2.01 % 93.93 ± 1.65 % 94.36 ± 1.43 % 93.60 ± 2.01 % 93.48 ± 1.69 %
Wine 95.81 ± 2.59 % 96.20 ± 0.97 % 92.74 ± 1.63 % 95.27 ± 2.44 % 95.61 ± 1.93 %

Image Segmentation 50.67 ± 23.37 % 57.84 ± 15.54 % 63.78 ± 13.54 % 61.60 ± 13.05 % 64.78 ± 15.23 %
Letters Recognition 80.79 ± 2.41 % 81.85 ± 2.10 % 82.10 ± 1.78 % 81.98 ± 1.19 % 81.16 ± 1.60 %

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 75.68 ± 2.07 % 75.62 ± 2.68 % 74.58 ± 2.56 % 77.86 ± % 0.00 93.23 %
Liver-Disorders 56.77 ± 2.38 % 56.53 ± 2.32 % 57.46 ± 2.33 % 57.64 ± % 0.00 88.19 %

Wisconsin Breast-Cancer 91.46 ± 1.41 % 94.02 ± 1.70 % 93.67± 1.81 % 93.66 ± 0.00 % 99.65 %
Wine 95.48 ± 1.11 % 95.14 ± 2.86 % 95.11± 2.10 % 96.59 ± % 0.00 100.00 %

Image Segmentation 52.20 ± 18.43 % 59.11 ± 12.58 % 57.20 ± 11.25 % 78.24 ± % 0.00 95.29 %
Letters Recognition 81.76 ± 2.06 % 81.50 ± 1.67 % 81.27± 1.80 % 84.36 ± % 0.00 93.40 %

Table XXXVI

The average ensemble sizes of QDC classifiers selected by MOGA with different
objective functions on problems extracted from the UCI machine learning repository

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 4.31 4.12 4.49 4.30 3.94
Liver-Disorders 3.86 4.13 4.02 4.62 3.90

Wisconsin Breast-Cancer 3.92 4.15 3.57 3.94 4.10
Wine 4.35 4.22 3.85 4.29 3.78

Image Segmentation 3.16 4.41 4.50 4.25 4.55
Letters Recognition 3.79 4.08 4.61 4.62 3.84

Jacard M.V.E M.E. ALL
Pima-Diabetes 4.42 4.16 4.56 10.00
Liver-Disorders 4.19 4.38 3.93 10.00

Wisconsin Breast-Cancer 4.20 3.81 4.11 10.00
Wine 4.53 4.35 3.95 10.00

Image Segmentation 3.48 3.81 3.72 10.00
Letters Recognition 4.43 4.14 3.81 10.00

We used the MOGA as the search algorithm, with 32 individuals in the population and 500

generations. The mutation rate was set to 1
L

, where L is the length of the mutated binary

string (21), and the crossover probability was set to 50%. For both classifier-free ensemble
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Table XXXVII

The average recognition rates of the ensembles of PARZEN WINDOWS classifiers
selected by MOGA with different objective functions on problems extracted from the

UCI machine learning repository

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 78.49 ± 1.56 % 75.00 ± 1.14 % 77.12 ± 2.58 % 78.18 ± 1.13 % 77.73 ± 2.02 %
Liver-Disorders 68.66 ± 3.15 % 68.18 ± 3.52 % 68.29 ± 4.39 % 67.77 ± 3.90 % 67.55 ± 4.23 %

Wisconsin Breast-Cancer 90.83 ± 1.22 % 90.98 ± 1.08 % 90.86 ± 1.03 % 91.16 ± 1.22 % 90.25 ± 1.48 %
Wine 76.52 ± 1.61 % 79.06 ± 4.43 % 79.96 ± 1.35 % 78.60 ± 4.51 % 79.62 ± 5.08 %

Image Segmentation 75.53 ± 5.62 % 75.74 ± 5.42 % 76.33 ± 5.24 % 76.61 ±3.28 % 75.79 ± 5.10 %
Letters Recognition 86.88 ± 2.13 % 87.39 ± 1.96 % 87.70 ± 1.03 % 87.74 ± 1.14 % 86.83 ± 2.06%

Jacard M.V.E M.E. ALL Oracle
Pima-Diabetes 77.57 ± 2.33 % 76.45 ± 2.78 % 77.62 ± 1.92 % 78.12 ± 0.00 % 92.19 %
Liver-Disorders 68.11 ± 3.55 % 68.23 ± 2.96 % 68.39± 3.50 % 70.83 ± 0.00 % 89.58 %

Wisconsin Breast-Cancer 88.23 ± 1.47 % 91.27 ± 1.30 % 90.89 ± 1.34 % 91.55 ± 0.00 % 98.94 %
Wine 78.66 ± 4.32 % 78.45 ± 4.10 % 80.02± 4.29 % 76.14 ± 0.00 % 100.00 %

Image Segmentation 77.63 ± 5.86 % 75.94 ± 4.13 % 76.83± 4.71 % 79.62 ± 0.00 % 98.48 %
Letters Recognition 87.46 ± 1.49% 87.26 ± 1.61 % 87.45 ± 1.01 % 89.52 ± 0.00 % 96.70 %

Table XXXVIII

The average ensemble sizes of PARZEN WINDOWS classifiers selected by MOGA with
different objective functions on problems extracted from the UCI

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand
Pima-Diabetes 4.48 3.75 4.42 4.89 4.09
Liver-Disorders 3.98 4.30 4.11 4.45 3.84

Wisconsin Breast-Cancer 4.06 4.17 3.65 4.19 4.10
Wine 4.58 4.17 3.80 4.21 3.86

Image Segmentation 3.41 4.32 4.44 4.46 4.70
Letters Recognition 4.11 3.95 4.28 4.11 3.93

Jacard M.V.E M.E. ALL
Pima-Diabetes 4.18 4.05 4.13 10.00
Liver-Disorders 4.10 5.02 4.06 10.00

Wisconsin Breast-Cancer 4.34 3.97 4.03 10.00
Wine 4.71 3.78 4.02 10.00

Image Segmentation 4.23 3.93 4.48 10.00
Letters Recognition 4.23 4.31 4.19 10.00

selection (or feature subset selection) and classifier-based ensemble selection, a threshold

of 3 feature subsets or classifiers was applied as the minimum number of feature subsets

or classifiers, and the experiments were repeated 30 times.
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Note that the MOGA solutions are non-dominated (known as Pareto-optimal) solutions. In

order to approach these solutions, we applied a non-dominated Sorting Genetic Algorithm

(NSGA2), developed by Deb (13). NSGA2 maintains the dual objective of the MOGA by

using a fitness assignment scheme, which prefers non-dominated solutions, and a crowded

distance strategy, which preserves diversity among the solutions of each non-dominated

front.

First, we note that the MOGA search based on clustering diversity indices gives a larger

population than the single GA does for classifier-free ensemble selection (Table XXXIV,

XXXVI, XXXVIII). Although their population sizes are larger, the feature subsets se-

lected with the MOGA generally, but not always, perform better than those selected with

the single GA (Table XXXIX).

Table XXXIX

The significance p value of the recognition rates between classifier-free MOGA search
and classifier-free GA search

Pima Liver Wisconson Wine Image Letter
-Diabete -Disorder Breast Cancer Segmentation Recognition

KNN 1e-06 1e-07 2e-09 8e-04 2e-09 6e-04
QDC 2e-09 0.0829 0.2513 2e-09 1e-09 2e-09
PWC 2e-09 0.3482 0.1891 8e-04 2e-09 2e-09

By contrast, the MOGA search based on ME or MVE does not perform better than the

single GA search for classifier-based ensemble selection. This is understandable, since

ME or MVE benefit directly from the classifier outputs, with the result that the maximum

ensemble size does not help much in improving the results.

Interestingly, we observe that, with the MOGA search, most objective functions, including

clustering diversities for classifier-free ensemble selection and ME and MVE for classifier-

based ensemble selection, gave similar performances (Table XXXIII, XXXV, XXXVII).

The reasonably small standard deviations indicate that their performances are quite stable
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in different replications. There seems to be no index which is apparently best for classifier-

free ensemble selection and for classifier-based ensemble selection. The best solutions

seem to be problem-dependent. According to the ’no free lunch’ theorem (105; 106),

there is no single search algorithm that will always be the best for all problems. This

phenomenon can be observed in our experiments.

Although the experiments suggest that the MOGA scheme for classifier-free ensemble se-

lection might be applicable in Random Subspaces, the problems extracted from the UCI

Machine Learning Repository usually consist of a small number of samples in low feature

dimensions. Furthermore, given the constrained feature space dimensions, the classifier

pool is composed of only 10 classifiers in our experiment. These constraints make the

result less convincing, although we believe that the MOGA scheme for classifier-free en-

semble selection might offer more advantages in a more complex problem with a larger

classifier pool. We thus carried out a larger-scale experiment on a problem with more fea-

tures and larger classifier pools, and hence the next experiment on a 10-class handwritten-

numeral problem with 132 features and 100 classifiers.

6.4 Evaluation of Objective Functions for Ensemble Selection on a Handwritten

Numeral Recognition Problem

Although the experiments on the UCI machine learning problems suggest that a classifier-

free ensemble selection scheme might be applicable, these experiments were carried out on

small databases (apart from the letter recognition problem, where the number of samples

≤ 3000) with a small number of features (apart from the breast cancer problem, where

the number of features ≤ 20) and relatively small pools (total classifiers = 10). In other

words, we knew that clustering diversity might work in classifier-free ensemble selection,

but only for small-scale problems.
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We wanted to know whether or not classifier-free ensemble selection would be applicable

in a large-scale problem. Similar to the experiments on problems extracted from the UCI,

these experiments were executed with both the single GA search and the MOGA search.

The experiments were performed on a 10-class handwritten-numeral problem. The data

were extracted from NISTSD19, essentially as in (99). We first defined 100 feature sub-

spaces for classifier-free ensemble selection (or feature subset selection), each feature sub-

space containing 32 features extracted from the total of 132 features. For classifier-based

ensemble selection, these 100 feature subspaces were used to train 100 corresponding

KNN classifiers. We used nearest neighbor classifiers (K = 1) for the KNN classifiers.

Several databases were used:

• Training set:

Containing 5000 data points (NISTSD19 hsf_{0−3}), this set was used to create

100 KNN in Random Subspaces for classifier-based ensemble selection. Note that,

since classifier-free ensemble selection does not require classifiers, this set was not

used for classifier-free ensemble selection until the final evaluation stage. Note that

this set is used only for the KNN classifiers and not for search purposes.

• Optimization set:

Containing 10000 data points (NISTSD19 hsf_{0− 3}), this set was used for the

GA and the MOGA search for both classifier-free ensemble selection and classifier-

based ensemble selection. In the case of classifier-free ensemble selection, we mea-

sured the clustering diversities of various combinations of feature subsets, and, in

the case of classifier-based ensemble selection, we measured the ME and MVE of

various ensembles of classifiers.

For both the GA and MOGA search algorithms, we set at 128 the number of indi-

viduals in the population and 500 generations, which means that 64, 000 ensembles

were evaluated in each experiment. The mutation rate was set to 1
L

, where L is the
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length of the mutated binary string (21), and the crossover probability was set to

50%. During the whole search, a threshold of 3 feature subsets or classifiers was

applied as the minimum number of feature subsets or classifiers for both classifier-

free ensemble selection and classifier-based ensemble selection. All the experiments

were carried out with 8 different objective functions (6 clustering diversity measures

for classifier-free ensemble selection, ME and MVE for classifier-based ensemble

selection) and 30 replications.

• Validation set:

Containing 10000 data points (NISTSD19 hsf_{0−3}), this set was used to eval-

uate all the individuals according to the defined objective function, and then to store

those individuals in a separate archive after each generation (86) (see Fig. 38) for

both classifier-free ensemble selection and classifier-based ensemble selection. Note

that the archive mechanism is designed to avoid the overfitting of the defined objec-

tive functions, and has been shown to be capable of doing so (86), and that these

objective functions may or may not represent classification accuracy. Moreover, at

this stage, there are no classifiers for classifier-free ensemble selection.

For classifier-free ensemble selection, the objective functions are clustering diversi-

ties, and thus we evaluated them on the validation set and stored the individuals of

its pareto front in a separate archive. For classifier-based ensemble selection, the ob-

jective functions are ME and MVE, and thus we evaluated ensemble performances

using ME or MVE as fusion functions on the validation set and stored their pareto

front in an archive.

The validation set was also used for the final evaluation of the classifier-free MOGA

search. Since the classifier-free MOGA search gives a group of solutions, and be-

cause each solution is an ensemble of feature subsets, it is difficult to say which

solution will be the best in terms of recognition rate. As a result, these solutions

need to be further evaluated. To evaluate these solutions of combinations of feature
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subsets, we would need to construct EoCs based on the groups of feature subspaces

found, and then evaluate the performances of these ensembles (Fig. 42 & Fig. 43).

The solutions stored in the archive were used to construct ensembles using the train-

ing set, and their performances evaluated on the validation set. The best solution

found on the validation set was then evaluated on the test set.

• Test set:

Containing 60089 data points (NISTSD19 hsf_{7}), this set was used to evaluate

the ensembles selected by classifier-free ensemble selection and by classifier-based

ensemble selection. A MAJ is used as the fusion function for classifier combination,

because of its stable performance as reported in literature (89).

Note that, according to the definition of the validation set, we used the global validation

of all solutions for each generation and the best solutions were maintained in an external

archive. The best solution defined in terms of ME in the Pareto front was selected, and its

performance evaluated on the test set.

6.4.1 Single Genetic Algorithm for Ensemble Selection for Handwritten Numeral

Recognition

We performed a number of experiments directly, using the various objective functions for

ensemble selection that had been evaluated by the GA search. We tested 6 clustering diver-

sity measures for classifier-free ensemble selection (or feature subset selection), and ME

and MVE for classifier-based ensemble selection. We then compared the performances of

the EoCs selected by the two selection methods.

For classifier-based ensemble selection, the EoCs selected by MVE achieved an average

96.45% classification accuracy, while those selected by ME had only a 94.18% recognition

rate (Table XL; Fig. 39). Note that the EoCs found by MVE have, in general,19 ∼ 35 clas-

sifiers. However, for classifier-free ensemble selection, the GA search led to the minimum
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Table XL

The average recognition rates on test data of ensembles searched by GA with different
objective functions including: original clustering diversity measures, compared with

mean classifier errors and majority voting errors. The simple majority voting was used as
the fusion functions, and the ensemble sizes were indicated in parenthesis

ALL
96.28 % (100.00)

Classifier-Based Ensemble Selection

ME MVE
94.18 ± 0.00% (3.00 ± 0.00) 96.45 ± 0.05% (24.53 ± 3.58)

Classifier-Free Ensemble Selection

Wallace Index-1 Wallace Index-2 Fowlkes-Mallows
92.55 ± 0.55% ((3.00 ± 0.00) 92.61 ± 0.43 % (3.00 ± 0.00) 93.06 ± 0.14% (3.00 ± 0.00)

Rand Jacard Mirkin’s
92.25 ± 0.56% (3.00 ± 0.00) 92.22 ± 0.10% (3.00 ± 0.00) 93.03 ± 0.50% (3.00 ± 0.00)

number of feature subsets (Fig. 40). Nevertheless, there is a huge gap between the perfor-

mances of classifier-free ensemble selection using clustering diversity indices and those of

classifier-based ensemble selection using MVE. We note that even classifier-based ensem-

ble selection using simple ME can perform better than classifier-free ensemble selection

using clustering diversity measures as objective functions.

However, this does not mean that the idea of classifier-free ensemble selection is not a valid

one. As we have already stated, the major problem of the GA search is its convergence

to the minimum feature subset size (3 feature subsets), and thus the problem resides more

in the search algorithm than in the choice of objective functions. That is why we applied

MOGA for classifier-free ensemble selection.
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Figure 39 The average recognition rates achieved by EoCs selected by modified
clustering diversities with the single GA, compared with Mean Classifier
Error (ME), Majority Voting Error (MVE), and the ensemble of all (100)
knn classifiers

6.4.2 Multi-Objective Genetic Algorithms for Ensemble Selection for Handwritten

Numeral Recognition

For classifier-free ensemble selection, the use of the MOGA search emphasizes the op-

timization of the clustering indices, as well as the maximization of the number of fea-

ture subsets. While the latter is no less relevant to better ensemble performance, it does

avoid the problem of minimum ensemble size convergence that occurred in the GA search.

While a MOGA search might not be necessary for classifier-based ensemble selection, we
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Figure 40 The evaluated population (diamonds) and and selected solution (the circle)
based on the single GA search with Mirkin’s Metric as the objective function.
The number of selected feature subsets is shown to illustrate the process of
the convergence into the minimum feature subset size

performed one nonetheless, so that we could compare the results of classifier-based en-

semble selection with those of classifier-free ensemble selection.

First, we note that, because we used a MOGA, classifier-free ensemble selection with

clustering diversity indices no longer converged to 3 feature subsets (Fig. 42). In general,

the population selected from the pareto front has about half the feature subsets of the total

pool (see Table XLI). This could allow further, more refined ensemble selection.

Moreover, we note that, in general, the feature subsets selected by classifier-free ensemble

selection with clustering diversity indices construct adequate ensembles. The recognition
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Table XLI

The average recognition rates on test data of ensembles searched by MOGA with
different objective functions including: original clustering diversity measures, three

approximations of classifier diversity measures, compared with mean classifier errors and
majority voting errors. The simple majority voting was used as the fusion functions, and

the ensemble sizes were indicated in parenthesis

ALL
96.28 % (100.00)

Classifier-Based Ensemble Selection

ME MVE
96.26 ± 0.08% (48.83 ± 5.75) 96.25 ± 0.04% (49.25 ± 5.59)

Classifier-Free Ensemble Selection

Wallace Index-1 Wallace Index-2 Fowlkes-Mallows
96.24 ± 0.08% (50.88 ± 5.34) 96.25 ± 0.06 % (51.08 ± 4.46) 96.25 ± 0.08% (50.42 ± 4.93)

Rand Jacard Mirkin’s
96.23 ± 0.08% (51.95 ± 4.09) 96.26 ± 0.06% (52.91 ± 4.63) 96.19 ± 0.08% (50.75 ± 4.61)

Table XLII

The p-value of hypothesis test on the recognition rates of ensembles selected by various
objective functions compared with that of the ensemble of all classifiers

Mirkin’s Wallace Index-1 Wallace Index-2 Fowlkes-Mallows Rand Jacard M.V.E M.E.
0.0001 0.2005 0.2005 0.0428 0.2005 0.5847 0.8555 0.0161

rates achieved by these ensembles are very close to those achieved when all the classifiers

are used (Fig. 41). In fact, the significances are usually p ≥ 0.01 (Table XLII).

For classifier-based ensemble selection, ME also benefits from the MOGA scheme, and

even slightly outperforms MVE as an objective function in a MOGA (See Table XLI). By

contrast, MVE did not perform quite as well as in a single GA, but the difference is rather

small (0.20%). With a MOGA, MVE selected 49.25 classifiers on average, many more

than it did with the simple GA.



176

Figure 41 Box plot of the classifier-free ensemble selection schemes using MOGA
compared with the classifier-based ensemble selection using Mean Error
(ME) and Majority Voting Error (MVE) as objective functions

The results of using the clustering diversities in classifier-free ensemble selection are en-

couraging, and all of them performed as well as the ensemble of all classifiers, but the

ensemble sizes were cut in half. Furthermore, there is no clear difference among the vari-

ous clustering diversity measures (Fig. 41). This indicates that data diversity can be used

to carry out ensemble selection in Random Subspaces, and that the proposed classifier-free

ensemble selection scheme using clustering diversity measures as objective functions does

work.
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Figure 42 The pareto front of the MOGA search for the classifier-free ensemble
selection scheme. The evaluated population (diamonds), the population in the
pareto front (circles) and the validated solution (crosses) based on the MOGA
search with Mirkin’s Metric and the number of selected feature subsets the
objective functions. The best performance evaluated on the validation set is
shown in the text boxes

6.4.3 Classifier-Free Ensemble Selection Combined with Pairwise Fusion Functions

for Handwritten Numeral Recognition

While MAJ is one of the fusion functions most often used for combining classifiers, it

is not necessarily the optimum choice. In our experiment on handwritten numeral recog-

nition, in which all the ensembles were combined with MAJ, classifier-based ensemble

selection using MVE as the objective function, which uses MAJ to evaluate the ensem-
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Figure 43 The validated recognition rates of individuals on pareto front. E.S. =
Ensemble Size; V.R.R. = Validation Recognition Rate in percents

bles, performed better than classifier-free ensemble selection using clustering diversity as

the objective function.

However, if we apply other fusion functions - such as the pairwise fusion matrix with the

majority voting rule (PFM-MAJ) (59; 60) - the classifier-based ensemble selection using

MVE might not be the best scheme. It turns out that the performances of ensembles se-

lected by classifier-free ensemble selection can be further improved by using better fusion

functions. As we can see in Table XLIII, the recognition rates of ensembles applying

PFM-MAJ are apparently better than those applying the simple MAJ.
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Moreover, for the MOGA search, when PFM-MAJ was used as the fusion function,

classifier-free ensemble selection using clustering diversity indices outperformed the

classifier-based ensemble selection using MVE.

Table XLIII

The average recognition rates on test data of ensembles searched by MOGA with
different objective functions. The pairwise confusion matrix applying the

pairwise-majority voting was used as the fusion functions. The ensemble sizes are the
same as those in Table. XLI

ALL
96.28 % (100.00)

Classifier-Based Ensemble Selection

ME MVE
96.89 ± 0.05% (48.83 ± 5.75) 96.78 ± 0.09 (49.25 ± 5.59)

Classifier-Free Ensemble Selection

Wallace Index-1 Wallace Index-2 Fowlkes-Mallows
96.91 ± 0.05% (50.88 ± 5.34) 96.90 ± 0.04 % (51.08 ± 4.46) 96.90 ± 0.04% (50.42 ± 4.93)

Rand Jacard Mirkin’s
96.90 ± 0.04% (51.95 ± 4.09) 96.89 ± 0.03% (52.91 ± 4.63) 96.88 ± 0.08% (50.75 ± 4.61)

6.5 Discussion

In this chapter, we examined whether or not clustering diversity can represent the data

diversity of different feature subsets in Random Subspaces, and whether or not the use of

clustering diversity as the data diversity measure could allow us to apply a classifier-free

ensemble selection scheme.

First, for classifier-free ensemble selection, we used the single GA as the search algorithm.

We found that, with the clustering diversity indices as objective functions, it tends to con-

verge to the minimum number of feature subsets, which makes a classifier-free ensemble

selection scheme less useful.
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Then, in order to compensate for the problem of the minimum feature subset convergence

of the clustering diversities, we used the MOGA as the search algorithm. The cluster-

ing diversity measures yielded encouraging performances as objective functions for the

classifier-free ensemble selection scheme.

However, we note that the proposed scheme for classifier-free ensemble selection bears

the additional cost of the clustering and on MOGA search. But, in general, the cost of

the clusterings is much less than the cost of training classifiers such as the Support Vector

Machine or the Multi-Layer Neural Network. Moreover, with the help of eq. 6.5 ∼ eq.

6.8, comparison of the clusterings takes a relatively short time. For the MOGA search,

the additional objective - the number of feature subsets - does not require complicated

calculation.

The only major cost is the evaluation of the solutions found on the pareto front after the

MOGA search. This requires the training of a classifier for each feature subset selected to

evaluate the performances of ensembles, so that the best ensemble can be chosen. Com-

pared with a traditional ensemble selection scheme, which requires the training of all

classifiers and combinations of all the ensembles evaluated, the proposed scheme offers

an interesting alternative. This approach will be especially attractive for tackling problems

with a large classifier pool and time-consuming classifier training.

6.6 Conclusion

In this chapter, we argue that clustering diversities actually represent the data diversities

of different feature subsets in the Random Subspaces ensemble creation method. These

data diversities can be measured with the help of clustering diversities without any clas-

sifier training. As a result, the feature subsets can be selected by clustering diversities to

construct the classifiers in Random Subspaces.
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Applying the MOGA search, we show that the ensembles selected by the clustering diver-

sities had performances comparable to those selected by MVE, which is regarded as one

of the best objective functions for ensemble selection (89). The results are encouraging.

Based on our exploratory work, we have drawn up some implications for the classifier-free

ensemble selection approach:

a. In Random Subspaces, with the MOGA search the clustering diversity measures are

good objective functions for ensemble selection.

b. In Random Subspaces, the ensembles selected by the different clustering diversity

measures have so far been found to have similar performances based on the MOGA

search.

Even though the clustering diversities might only be able to represent data diversities in

Random Subspaces, for Bagging, which only use a part of the samples, there is still no

adequate measure for their data diversities. It will be of great interest to figure out how to

measure the data diversities in Bagging. Finally, we have to mention that, due to its special

ensemble generating mechanism, the scheme is not likely to be applicable in Boosting.



CHAPTER 7

CONCLUSION

7.1 Contributions

In this document, we present our five major contributions to the improvement of EoCs:

a new ensemble creation method for ensembles of HMM (EoHMM) classifiers based on

different codebook sizes, a new ensemble selection method based on the combination of

the diversity and classifier accuracy, a dynamic ensemble selection method based on the

concept of the oracle, a classifier-free ensemble selection based on clustering diversity and

a pairwise fusion matrix for classifier combination.

To demonstrate the usefulness of these methods, we carried out various experiments on

problems extracted from the UCI Machine Learning Repository, as well as handwritten

numeral digits extracted from NIST SD19. In addition, we have focused on improving

EoHMM classifiers. We generated the basic HMM classifiers using different codebook

sizes (and thus different codebooks). Once these HMM classifiers had been generated,

we performed ensemble selection using a compound diversity function which combines

the diversity between classifiers and classifier accuracies. Following ensemble selection,

we used the pairwise fusion matrix for classifier combination. We demonstrated that the

new ensemble creation method (using different codebook sizes), the new ensemble se-

lection method (using compound diversity functions) and the new classifier combination

method (using the pairwise fusion matrix) all contribute to the improvement of EoHMM

classifiers.

Dynamic ensemble selection is regarded solely as an alternative in our work. Unlike static

ensemble selection (selection of an ensemble for all samples) and dynamic classifier selec-

tion (selection of a classifier for each sample), it selects one ensemble for each test sample.

The method presented uses the concept of the oracle. We showed that this method worked
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on the problems extracted from the UCI Machine Learning Repository, as well as on the

handwritten numeral digits extracted from NIST SD19 using KNN classifiers. This is the

first dynamic ensemble selection method to be presented in the literature.

Another alternative that we offered is so-called "classifier-free ensemble selection". We

tried to measure the data diversity of different feature subspaces using clustering diversity

measures. Because the data diversity of different feature subspaces can be measured,

we can select those feature subspaces that have the maximum diversities. The feature

subspaces with high diversity will generate classifiers which also have high diversity. This

method is the first ensemble selection method presented in the literature based on the

concept of data diversity. However, we need to remember that this method applies only on

classifiers generated with the Random Subspaces ensemble creation method, and cannot

be applicable on other ensemble creation methods, including Bagging and Boosting.

7.2 Future Works

A number of avenues for future work are possible. The first derives from the fact that

EoHMM classifiers have thus far only been created based on different codebook sizes.

Since we did not optimize the number of the states for each HMM, we could use different

states and different codebooks to create EoHMM classifiers. We shall expect a higher

diversity among classifiers and probably a better recognition results on EoHMMs.

The second derives from the fact that our pairwise fusion matrix transformation for clas-

sifier combination is based merely on classifier pairs. We instinctively feel, however, that

a similar method based on three classifiers could work, and that we could construct fusion

matrices based on the output of any three, and then on four, five, six, or more classifiers.

It would therefore be advisable to test different degrees of transformation for classifier

combination in the future.
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The third derives from the fact that the new dynamic ensemble selection method is based

on the concept of the oracle. But, in order to find the most adequate ensemble for a test

sample, we measured the Euclidean distance between this test sample and other training

samples. We did not weight the Euclidean distance measured. If we do so, we might find

a more adequate oracle for the test sample.

The fourth derives from the fact that the new classifier-free ensemble selection method

only works for the Random Subspaces ensemble creation method and not to other meth-

ods, such as Bagging and Boosting. But, would it be possible to measure data diversity for

other ensemble creation methods? If so, then classifier-free ensemble selection will be also

possible for Bagging and Boosting. It would therefore be of great interest to investigate

this question further.

To conclude, our work offers a number of contributions on different aspects of a multi-

ple classifier system. We managed to improve the pattern recognition results by using

ensembles of multiple classifiers, and we refined the techniques of ensemble creation, en-

semble selection, and classifier combination. This is not to say that we have achieved our

goal, however. Just as research is a never-ending process, we look forward to a journey of

discovery in seeking improvements to the state of this art in the future.



APPENDIX 1

The Random Subspaces ensemble creation method
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Random Subspaces is an ensemble creation method (49) that uses different feature sub-

spaces to create an ensemble of classifiers. Under Random Subspaces, we train each

classifier using all samples in certain feature subsets. Since different classifiers are trained

with different feature subsets, these classifiers might give different outputs in classifica-

tion. In general, we fix the size of feature subsets that classifiers are trained with, and the

size of feature subsets is known as the cardinality of Random Subspaces.

To illustrate, we give an example below. Suppose that we have some data points for

classifier training, and each data point has M features. Now we can decide only use M̂

features for classifier training, so M̂ is the cardinality of Random Subspaces. To select M̂

features from the total M features, we have CM̂
M choices, and that is the maximum number

of classifiers that we can generate.

For example, all data points have 6 features. If we decide to use only 3 of these features

to train each classifier, then the cardinality is 3. Since only 3 of 6 features are used for

classifier training, we have C3
6 = 6×5×4

3×2×1
= 20 possibilities of composition of classifiers.

As a result, the maximum number of classifiers with this cardinality is 20.

As we can observe that the sufficient number of available features is one of the crucial keys

for Random Subspaces ensemble creation method. Ho described that Random Subspaces

method is best when the dataset has a large number of features and samples, and is not

good when the dataset has very few features coupled with a very small number of samples

(49).

However, Ho also observed that Random Subspaces method is good when there is certain

redundancy in the dataset, especially in the collection of features. Consequently, Random

Subspaces method is especially valuable for tasks involving low-level features (49). Note

that in order to have enough classifiers, in some cases it might be desirable to generate

additional features by using original features. By this way, even though the generated
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features are correlated with original features, a enlarged feature space will allow more

classifiers to be created with Random Subspaces.

Although is has been observed that the ensemble accuracy improves when the number

of classifiers increases, Ho suggested that using half of feature components yielded the

best ensemble accuracy (49). Nevertheless, when the number of features is small, there

is a trade-off between the cardinality of Random Subspaces and the accuracy of single

classifiers. It is thus important to assure that the cardinality used will guarantee a minimum

accuracy of single classifiers.



APPENDIX 2

The Effects of the Class Size and of the Ensemble Size on the Correlation between

the Classifier Diversity and the Ensemble Accuracy
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Even though a number of studies have targeted on the correlation measurements between

the classifier diversity and the ensemble accuracy, the influences of the class dimension

and the ensemble size get relatively little attention. In this appendix, we try to figure out

their impacts on the correlation measurements.

For a sample x in a T -class problem, suppose that the correct class is i, 1 ≤ i ≤ T .

The ensemble will give correct output only under the condition ∀j, c(i)T > c(j)T , for

1 ≤ i, j ≤ T, i 6= j, where c(i)T is the number of classifiers making a decision on class

i, and c(j)T is the number of classifiers making a wrong decision on another class j, in a

T -class problem. Under the condition ∀j, c(i)T > c(j)T , the c(i)T can decrease, and the

c(j)T can increase, and the ensemble can still give the correct output.

Suppose that, for a certain problem, for a sample x, the correct class label t(x) is i, 1 ≤

i ≤ T , then the probability of the sample x being classified as class j is P (c(j)T |t(x) = i),

we have

T∑
j=1

P (c(j)T |t(x) = i) = 1, 1 ≤ i, j ≤ T (2.1)

If the number of classes increases to T + 1 classes, the equation above will become :

T+1∑
j=1

P (c(j)T+1|t(x) = i) = 1, 1 ≤ i, j ≤ T + 1 (2.2)

Compared with the eq. 2.1, the probability P (c(T + 1)T+1|t(x) = i) is added to the eq.

2.2. This term can be regarded as the sum of the probabilities of classifying the sample x

as class j in the case of T classes but as class T +1 in the case of T +1 classes. This term

can be further decomposed as :

P (c(T +1)T+1|t(x) = i) =
T∑

j=1

P (c(T +1)T+1, c(j)T |t(x) = i), 1 ≤ i, j ≤ T (2.3)
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where P (c(T + 1)T+1, c(j)T |t(x) = i) is the probability of classifying the sample as class

j in the problem T classes but as T +1 in the problem of T +1 class, note that 1 ≤ j ≤ T .

If we suppose that samples classified as class j in the problem T classes will only be

classified as the original class j or as the new class T + 1 in the problem of T + 1 class,

then we can write :

P (c(j)T |t(x) = i) =

P (c(T + 1)T+1, c(j)T |t(x) = i) + P (c(j)T+1, c(j)T |t(x) = i), 1 ≤ i, j ≤ T (2.4)

For the problem with T classes, given L classifiers, then we can define the margin m(T )

as :

m(T ) = L · (P (c(i)T |t(x) = i)− P (c(j)T |t(x) = i)) (2.5)

For the same problem, if we add an independent class, i.e., if the total number of classes

increases to T + 1, the margin m(T + 1) would be :

m(T + 1) = L · (P (c(i)T+1|t(x) = i)− P (c(j)T+1|t(x) = i)) (2.6)

Inasmuch as the added class T + 1 is independent of all other T classes, we suppose that

the class T + 1 does not change the proportional posterior probabilities of outputs among

T classes. This means that in a one-against-one manner of classification, class T + 1 does

not interfere in the classification between class fi and class fj , with 1 ≤ i, j ≤ T, i 6= j.

In other words, samples classified as class i in the problem T classes will only be classified

as the original class i or as the new class T + 1 in the problem of T + 1 class, but never as
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another class j. Based on this assumption, we have :

P (c(i)T+1|t(x) = i) = P (c(i)T+1, c(i)T |t(x) = i) (2.7)

P (c(j)T+1|t(x) = i) = P (c(j)T+1, c(j)T |t(x) = i) (2.8)

m(T ) = L · (P (c(i)T+1, c(i)T |t(x) = i) + P (c(T + 1)T+1, c(i)T |t(x) = i)

−P (c(j)T+1, c(j)T |t(x) = i)− P (c(T + 1)T+1, c(j)T |t(x) = i)) (2.9)

m(T + 1) = L · (P (c(i)T+1, c(i)T |t(x) = i)− P (c(j)T+1, c(j)T |t(x) = i)) (2.10)

Using eq. 2.9 and eq. 2.10, we obtain the difference in the margins m(T ) and m(T + 1):

m∗(T ) = m(T )−m(T + 1) =

L · (P (c(T + 1)T+1, c(i)T |t(x) = i)− P (c(T + 1)T+1, c(j)T |t(x) = i)) =

L · P ∗(T ) (2.11)

Suppose that the newly added class T + 1 is independent of all other T classes, since

P (c(i)T |t(x) = i) ≥ P (c(j)T |t(x) = i), we will have P (c(T + 1)T+1, c(i)T |t(x) = i) ≥

P (c(T + 1)T+1, c(j)T |t(x) = i). This will lead to m∗(T ) ≥ 0, i.e., m(T + 1) ≤ m(T ).

That means, when the number of classes T increases, we will probably get a smaller m(T ).

Moreover, the margin m(T ) is also proportional to the number of classifiers L. Good

estimation of ensemble accuracy will require high class problems and a small number of

classifiers in ensembles.



APPENDIX 3

Classifier Diversity Measures
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In chapter 2 and in chapter 6, we used some classifier diversity measures in our experi-

ments. We thus feel the need to give the details of their definitions in this appendix.

The traditional concept of diversity is composed of the terms of correct / incorrect classifier

outputs. By comparing these correct / incorrect outputs among classifiers, their respective

diversity can be calculated. In this section, we provide an overview of traditional diversity

measures dealt with in this thesis:

a. Pairwise diversity measures

Diversity is measured between two classifiers. In the case of multiple classifiers, di-

versity is measured on all possible classifier-pairs, and global diversity is calculated

as the average of the diversities on all classifier-pairs. That is, given L classifiers,
L×(L−1)

2
pairwise diversities d12, d13, ..., d(L−1)L will be calculated, and the final di-

versity d̄ will be its average (66):

d̄ = 2×
∑

ij dij

L× (L− 1)
, i ≤ j (3.1)

This type of diversity includes: Q-statistics (1; 5), the correlation coefficient (66),

the disagreement measure (49) and the double fault (29).

b. Non-Pairwise diversity measures

There are others diversities that are not pairwise, i.e. they are not calculated by

comparing classifier-pairs, but by comparing all classifiers directly. This type of di-

versity includes: the Entropy measure (66), Kohavi-Wolpert variance (61), the mea-

surement of interrater agreement (5; 25), the measure of difficulty (47), generalized

diversity (80) and coincident failure diversity (80).

Most research suggests that neither type of diversity is capable of achieving a high degree

of correlation with ensemble accuracy, as only very weak correlation can be observed (66).

To understand how they work, and why one might be better than another, we detail the
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definitions of the diversity measures evaluated in this section. In general, to calculate the

diversity measures among classifiers, either we count the number of correctly / wrongly

classified samples for each classifier pair, which gives us pairwise diversity measures, or

we count the number of correctly / wrongly classified classifiers for each sample, which

produces non-pairwise diversity measures.

For pairwise diversity measures, suppose that we have 2 classifiers Di and Dk. We should

define :

a. N11 as the number of samples correctly classified by both Di and Dk

b. N10 as the number of samples correctly classified by Di but not by Dk

c. N01 as the number of samples correctly classified by Dk but not by Di

d. N00 as the number of samples incorrectly classified by both Di and Dk

Now, the total number of samples N should be :

N = N11 + N10 + N01 + N00 (3.2)

For non-pairwise diversity measures, suppose that there are L classifiers; for each sample

xj , we define the number of classifiers that correctly classify xj as l(xj), and the proba-

bility of a randomly drawn sample xj having l(xj) = L− i, 0 ≤ i ≤ L as pi. Using these

elements, we can define the following diversity measures :

a. Disagreement Measure (DM) (49)

This is a ratio between the number of observations on which one classifier is correct

and the other is incorrect to the total number of observations.

dmi,k =
N01 + N10

N11 + N10 + N01 + N00
(3.3)
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The DM index is especially interesting for us, for this index has a strong relationship

with clustering validity index. See appendix 4 for details.

b. Double-Fault (DF) (29)

This is the proportion of the samples that have been misclassified by both classifiers

:

dfik =
N00

N11 + N10 + N01 + N00
(3.4)

c. Kohavi-Wolpert Variance (KW) (61)

kw =
1

NL2

N∑
j=1

l(xj)(L− l(xj)) (3.5)

d. Interrater Agreement (INT) (25)

Define p̄ as the average individual classification performance :

p̄ =
1

LN

N∑
j=1

l(xj) (3.6)

Then, the interrater agreement is defined as :

int = 1−
1
L

∑N
j=1 l(xj)(L− l(xj))

N(L− 1)p̄(1− p̄)
(3.7)

For pairwise use, interrater agreement can also be defined as :

2(N11N00 −N01N10)

(N11 + N10)(N01 + N00) + (N11 + N01)(N10 + N00)
(3.8)
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e. Entropy Measure (EN) (66)

The entropy measure is defined as :

en =
1

N

N∑
j=1

1

L− [L/2]
min{l(xj), L− l(xj)} (3.9)

f. Measure of Difficulty (DIFF) (47)

We define a discrete random variable Xj taking values in { 0
L
, 1

L
, · · · , 1} and denot-

ing the proportion of classifiers that correctly classify a sample x drawn randomly

from all the samples. Then, the measure of difficulty is defined by calculating the

variance of X as V ar(X).

g. Generalized Diversity (GD) (80)

First we define p(1) and p(2) based on pi:

p(1) =
L∑

i=1

i

L
pi (3.10)

p(2) =
L∑

i=1

i(i− 1)

L(L− 1)
pi (3.11)

Then generalized diversity is defined as :

gd = 1− p(2)

p(1)
(3.12)

h. Coincident Failure Diversity (CFD) (80)

This is a modification of gd and is defined as :

cfd =
1

1− p0

L∑
i=1

L− i

L− 1
pi, p0 < 1 (3.13)



197

cfd = 0, p0 = 1 (3.14)

i. Q-Statistics (Q) (1; 5)

Qik =
N11N00 −N01N10

N11N00 + N01N10
(3.15)

j. Correlation Coefficient (COR) (66)

This is defined as :

cc =
N11N00 −N01N10

((N11 + N10)(N01 + N00)(N11 + N01)(N00 + N10))
1
2

(3.16)

Of the diversity measures defined above, DM, DF, Q and COR are pairwise, and the others

are non-pairwise. These diversity measures are designed for ensemble selection, but no

significant correlation has been observed between them and ensemble accuracy.



APPENDIX 4

Justification of Disagreement Measure (DM) as a Classifier Diversity Index
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Assume that the clustering upon the single feature fi generates K̂i clusters. So for cluster

i

σ2
i = ε[(x− µi)

2] =

∫ −∞

∞
(x− µi)

2p(x)dx (4.1)

µi = zi, p(x) =
1

|Ci|
, σ2

i = (
1

|Ci|
∑
x∈Ci

{‖x− zi‖2}) = Ŝi (4.2)

dij = |zi − zj| = |µi − µj| (4.3)

where σ2
i is the standard variance, and µi is the mean value, |Ci| is the number of samples,

and zi is the centroid, for the cluster i. dij indicates the distance between two clusters i

and j. Here we note that the difference between Si, which is used by DB index, and Ŝi,

which is showed above, is merely a calculation of square. So we rewrite the elements of

measure of between-clusters distances and within-cluster scatter in DB index as :

Si = (
1

|Ci|
∑
x∈Ci

{‖x− zi‖}) = σ̌i (4.4)

Ri = max
j,j 6=i

{ σ̌i + σ̌j

|µi − µj|
} (4.5)

It can be shown that the DB index based on Ri is a reasonable measure for one single

feature. Take into account the discriminant function gi(x) as the probability of the sample

x belonging to class ωi, we can use the minimum-error-rate criterion and re-write it as :

gi(x) = p(ωi|x) = p(x|ωi) · p(ωi) (4.6)

gi(x) = ln p(x|ωi) + ln p(ωi) (4.7)
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where p(ωi) is a priori probability for the likelihood of belonging to class ωi. When it is a

Gaussian distribution for cluster i, then :

pi(x) =
1

2πσi

exp[
−(x− µi)

2

2(σi)2
] (4.8)

So the discriminant function for a single sample x under Gaussian distribution is :

gi(x) =
−‖x− µi‖2

2(σi)2
+ ln p(wi) (4.9)

When no knowledge about a priori probability is available, then ln p(wi) can be ignored.

to simplify our notation we write :

gi(x) =
−‖x− µi‖

(σi)
(4.10)

−gi(x) · (σi) = ‖x− µi‖ (4.11)

Where a factor of 2 is eliminated and the square term is replaced by its distance. Since

any x not between µi and µj can lead to the following :

|µi − µj| = |‖x− µi‖ − ‖x− µj‖| (4.12)

Ri = max
j,j 6=i

{ σ̌i + σ̌j

‖gj(x) · (σj)− gi(x) · (σi)‖
} (4.13)
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In case the variance is equal for each cluster, i.e., σi = σj , and σ̌i = σ̌j , then :

R̂i = max
j,j 6=i

{ 1

‖gj(x)− gi(x)‖
} (4.14)

So the DB index indicates the reverse of difference of discriminant functions of two

classes, minimization of DB index is equal to maximization of the difference of discrimi-

nant functions of different classes. However, when the sample x is just between µi and µj ,

the the right term of difference of discriminant functions is :

‖gj(x) · (σj)− gi(x) · (σi)‖ = |µi + µj − 2 · x| (4.15)

0 ≤ |µi + µj − 2 · x| ≤ |µi − µj| (4.16)

Since this term depends on the value of x, it is hard for DB index to take into account this

condition, but note that the measure |µi − µj| is just its bound value.

At the end, we would like to mention that, when the clusters have different variance values,

i.e., σi 6= σj , or σ̌i 6= σ̌j , DB index uses this factor as a weight of the probability of a class.

Just use σi instead of σ̌i, and σj instead of σ̌j , then we have :

Ri = max
j,j 6=i

{ 1

‖gj(x) · σj

σ̌i+σ̌j
− gi(x) · σi

σ̌i+σ̌j
‖
} (4.17)



APPENDIX 5

From Classifier Diversity to Clustering Diversity: A Case Study of Disagreement

Measure
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5.1 Introduction

All ensemble creation methods generate diverse classifiers with the diverse data subsets,

and we wonder whether it is possible to select the data subsets before we train the classi-

fiers for the EoC. The problem is to define a data diversity so that we can use it to do the

data subset selection.

The main difficulty is to conceive a data diversity measure that can predict the classifier

diversity based on the different training data. In other words, given any two data subsets

di, dj , the data diversity between them Divd(di, dj) should be strongly correlated with

the classifier diversity Divc(ci, cj), where ci and cj are classifiers trained with the data

subsets di and dj , respectively. If the data diversity measure Divd can help us find a

number of suitable data subsets without classifier training, then it can reduce the time for

the classifier training. If Divd can help us find adequate data subsets for the ensemble

construction directly, then it can further reduce the time for the ensemble selection.

Since data points might have very different distributions in different feature subspaces,

it might be possible to measure the data distributions in different feature subspaces as a

measure of data diversity for the Random subspace. Given different feature subsets, if

we use the same clustering algorithm with the fixed parameters to carry out clustering

on them, it is possible that the clustering diversity between the different feature subsets

indicates the data diversity between them.

To verify this hypothesis, we discussed the relationship of classifier diversity and cluster-

ing diversity in different feature subspaces, and showed that there is a strong connection

between diversity measure (DM), a classifier diversity measure, and Mirkin’s metric, a

clustering diversity measure. We went further and show how to have better approximation

of DM from the Mirkin’s Metric. Three approximations of DM based on Mirkin’s Metric

were shown in appendix 6.
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In the next section, we discuss the connection between classifier diversity measures and

clustering diversity measures, we propose three approximations of classifier diversity from

clustering diversity based on various hypothesis. The correlation measurement between

classifier diversity measures and clustering diversity measures is then carried out. Discus-

sion and conclusion are in the last sections.

5.2 The Relationship between the Disagreement Measure (DM) and Mirkin’s

Metric

Based on the definitions of the classifier diversity and the clustering diversity mentioned

in the above sections, we need to figure out their connections and whether it is possible

to approximate classifier diversity from a clustering diversity under some circumstances.

But to start, some basic assumptions must be done.

5.2.1 Concept on 2-clusters clustering

For the development in this section, we make the following assumptions:

a. The data set is a 2-class problem.

b. The data set can be perfectly partitioned into 2 clusters.

c. For each cluster, all the samples in one cluster belong to the same class.

d. Both classes have the similar number of samples.

To get into this discussion, suppose that we have binary classes x, y, and two classifiers

Di, Dk, then we can establish the table below (Table XLIV): where Nxx is the number of

samples classified as x by both Di and Dk, Nxy is the number of samples classified as x

by Di but as y by Dk, Nyx is the number of samples classified as y by Di but as x by Dk,
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Table XLIV

Key concept for relating clustering diversity to classifier diversity

Dk classify (x) Dk classify (y)
Di classify (x) Nxx Nxy

Di classify (y) Nyx Nyy

Nyy is the number of samples classified as y by both Di and Dk. Intuitively, these three

equations stand :

Nxx + Nxy + Nyx + Nyy = N (5.1)

Nxx + Nyy = N11 + N00 (5.2)

Nxy + Nyx = N10 + N01 (5.3)

This table and these equations allow us to have an insight on the relation between the clus-

tering diversity and classifier diversity. Suppose that, for each classifier, all the samples

classified as class x can form a cluster, and those classified as y can form another cluster.

By this means, the comparing of two classifiers Di, Dk can be seen as the comparing of

two clusters Ci, Ck, where each class in Di forms a cluster in Ci, and each class in Dk

forms a cluster in Ck.

By using the same technique of counting the pairwise samples for comparing clustering

from the contingency table, we can get C11 by comparing the samples in the same blocks.

We get 4 blocks, so in each block we have m(m−1)
2

sample-pairs if there are m samples in

this block. By summing up the sample-pairs counts in these 4 blocks, we get the C11:

C11 =
Nxx(Nxx − 1)

2
+

Nxy(Nxy − 1)

2
+

Nyx(Nyx − 1)

2
+

Nyy(Nyy − 1)

2
(5.4)
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For calculating C10, C01 and C00, we apply the formulas we obtain before. For C10 we

count sample-pairs on the same row but not on the same columns, for C01 we count

sample-pairs on the same column but not on the same row, for C00 we count sample-pairs

neither on the same column nor on the same row.

C00 = NxxNyy + NxyNyx (5.5)

C10 = NxxNxy + NyyNyx (5.6)

C01 = NxxNyx + NyyNxy (5.7)

Using these terms instead of C11, C10, C01, C00 in clustering diversity measures, one can

clear find its logical mechanism :

a. Wallace Indices

Wallace− 1 : Wi(Ci, Ck) =
C11

C11 + NxxNxy + NyxNyy

(5.8)

Wallace− 2 : Wk(Ci, Ck) =
C11

C11 + NxxNyx + NxyNyy

(5.9)

b. Fowlkes-Mallows Index

F (Ci, Ck) = (Wi(Ci, Ck)Wk(Ci, Ck))
1
2 (5.10)

c. Rand Index

R(Ci, Ck) =
C11 + NxxNyy + NxyNyx

C(C−1)
2

(5.11)
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d. Jacard Index

J(Ci, Ck) =
C11

C(C − 1)− 2(NxxNyy + NxyNyx)
(5.12)

e. Mirkin’s Metric

K(Ci, Ck) = 2(Nxx + Nyy)(Nxy + Nyx) (5.13)

As we can see, most of the indices contain the terms that we cannot have a direct inter-

pretation on the terms of N11, N10, N01, N00. The only exception is the Mirkin’s metric,

which can be written as :

K(Ci, Ck) = 2(N11 + N00)(N10 + N01) (5.14)

And, it is evident that Mirkin’s metric has a strong relationship with the disagreement

measure used in the classifier diversity.

K(Ci, Ck) = 2 ·DM ·N · (N11 + N00) (5.15)

We intend to get the measure as close to Dis as possible by clustering. Without any class

label available in clustering, we can still approximate N11 + N00 by Nxx + Nyy. The

problem resides on obtaining Nxx + Nyy, and they could not be obtained directly. We

need a precondition to proceed the approximation, we suppose that both classes have the

similar number of samples, i.e.,

Nxx = Nyy (5.16)

Nxy = Nyx (5.17)
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The approximation is not straightforward, and we need to discuss three different cases

below :

a. 50% diversity (according to the disagreement measure)

If classifiers disagree with each other on half of samples, we have Nxx = Nxy

and Nyy = Nyx, i.e., we have diversity as 50% by the definition of disagreement

measure, as a result :

Nxx = Nyy = Nxy = Nyx (5.18)

N2
xy + N2

yx = 2 ·Nxx ·Nyy (5.19)

Consequently, using above two equations and eq. 5.1, we get :

(Nxx + Nyy)
2 = N2

xx + N2
yy + 2 · (Nxx ·Nyy) =

N2
xx + N2

yy + N2
xy + N2

yx = 2 · C11 + N (5.20)

b. 0% diversity (according to the disagreement measure)

If both classifiers are almost identical, in this case Nxy = Nyx = 0, and Nxx+Nyy =

N , thus we get Nxx ·Nyy = N2

4
, as a consequence :

(Nxx + Nyy)
2 = N2

xx + N2
yy + 2 · (Nxx ·Nyy) =

N2
xx + N2

yy +
N2

2
= 2 · C11 + N +

N2

2
(5.21)
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c. Diversity Parameter

The above two cases are easy to calculate, but are not suitable in most of the situa-

tions, where the diversity is neither 0 nor 1
2
. In fact, in practice most of the classifiers

shall agree with each other on a large part of the samples but disagree on a smaller

portion of them. i.e., the diversity shall be between 0 and 1
2
. To have a more general

approximation, we set up a diversity parameter α, where α = 0 will lead up to the

case of 50% diversity, and α = 1 means the diversity is 0:

(Nxx + Nyy)
2 = 2 · C11 + N + α · N2

2
(5.22)

This is actually the approximation of (Nxx+Nyy)
2. To satisfy the condition of this estima-

tion, we simplify the situation in a 2-class classification problem, and we need to suppose

that each class has similar number of samples N11 + N00 by Nxx + Nyy. When this condi-

tion is satisfied, using eq. 5.15, we define the approximation of DM from Mirkin’s Metric

based on 2-clusters hypothesis as :

E(2C)i,k ≡
K(Ci, Ck)

2N · (2 · C11 + N + N2

2
· α)

1
2

(5.23)

The hypothesis of the 2-clusters might not hold in most problems. However, we can extend

the approximations with the multi-clusters hypothesis E(MC) and with the multi-clusters

with the concern of the variation of the information hypothesis E(V I). Based on multiple

clusters hypothesis, the approximation of DM would be :

E(MC)i,k ≡
M · (K(Ci, Ck))

2N(((2 · C11 + N) ·M2 + N2

2
· α)

1
2 )

(5.24)
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where M is the number of clusters (See vi For details). Moreover, taking into account the

variation of information, the approximation would be :

E(V I)i,k ≡
M
N
· (K(Ci,Ck)

2
− 2 ∗ (t ·M − 1) · (C11 + N

2
))

((2 · C11 + N) · t ·M2 + N2

2
· α)

1
2

(5.25)

where t is a measure concerning the variation of information (See appendix 6 for details).

Now we do know that there is a close relationship between DM and Mirkin’n Metric, but

there is still a question that needs to be answered: Is there a strong correlation between

them?

To answer this question, we need to carry out the correlation measurements on synthetic

data as well as on the UCI machine learning problems.

5.3 Correlation Measurements between the Classifier Diversity and the Clustering

Diversity

5.3.1 Proof of Concept: Correlation Measurements with K-Nearest Prototype

Classifiers on Synthetic Problems

At the previous sections we propose three modified clustering diversities derived from

Mirkin’s Metric to estimate the classifier diversity close to disagreement measure (DM):

the estimation of diversity based on 2-clusters hypothesis (E(2C), eq. 5.23), the estima-

tion of diversity based on multiple-clusters hypothesis (E(MC), eq. 5.24, see appendix 6),

and the estimation of diversity based on multiple-clusters hypothesis but also corrected by

variation of information (E(VI), eq. 5.25, see appendix 6), diversity parameter α is set as

0.3. To know whether these estimations make any sense, and whether there are correla-

tions between the clustering diversities and DM, we first carried out the proof of concept

on the synthetic data. 5 different synthetic data were generated with different numbers of
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clusters and different numbers of classes; the clusters were formed with Gaussian distri-

bution centered at the different centroids, these data were generated in a feature space of

6 dimensions (Table XLV; Fig. 44).

Table XLV

The synthetic databases generated for proof of concept

database number of cnumber of number of number of number of number of
classes clusters train samples test samples features cardinality

Synthetic 2− 2 2 2 1000 1000 6 2
Synthetic 2− 4 2 4 1000 1000 6 2
Synthetic 2− 6 2 6 1000 1000 6 2
Synthetic 3− 3 3 3 1000 1000 6 2
Synthetic 4− 4 4 4 1000 1000 6 2

The basic classifiers were constructed based on Random Subspaces with fixed cardinality

(cardinality = 2 in the experiments). For each database, we generated 15 classifiers with

different feature subspaces. All centroids have the data points with the standard deviation

equal to 1.

The synthetic data were generated so that all clusters were partly merged, and they had

different degrees of the overlapping. Given the number of the clusters, each classifier

got its centroids by applying simple K-Means clustering, then the classification was done

by carrying out K-Nearest Prototypes (KNP), with K = 1. Once all classifiers were

constructed, they were randomly selected as a member of ensemble. The probability of

being selected is the same for all classifiers (p = 0.3). For each ensemble, we calculated

the correlation between the disagreement measure (DM) (49) as the classifier diversity

and the 9 following clustering diversities: 2 Wallace Indices, Fowlkes-Mallows Index,

Rand Index, Jacard Index, Mirkin’s Metric, and 3 different types of the estimations: the

estimation for simple 2 classes problems (E(2C), eq. 5.23), the estimation for multiple

classes problems (E(MC), eq. 5.24), and the estimation for multiple classes problems

using the variation of information (E(VI), eq. 5.25).
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Figure 44 The data points in different feature subspaces. There are 3 classes and the
feature dimension is 6
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Table XLVI

The centroids of the generated synthetic clusters

Syn. 2− 2 class-1 (cluster-1) class-2 (cluster-2)
(1, 1.2, 1.4, 1.6, 1.8, 2) (1, 1, 1, 1, 1, 1)

Syn. 2− 4 class-1 (cluster-1) class-1 (cluster-2) class-2 (cluster-3) class-2 (cluster-4)
(−2, 1, 2, 2, 1, 0) (2,−1, 3,−3,−1,−1) (0,−1, 0,−2,−3,−2) (2, 1,−2, 3, 0,−1)

Syn. 2− 6 class-1 (cluster-1) class-1 (cluster-2) class-1 (cluster-3)
class-2 (cluster-4) class-2 (cluster-5) class-2 (cluster-6)

(−3, 2, 6, 10, 14, 20) (0,−4,−8,−12,−16,−22) (3, 6, 10, 14, 18, 24)
(−3,−6,−10,−14,−20,−24) (0, 8, 12, 16, 22, 26) (3,−10,−14,−18,−24,−28)

Syn. 3− 3 class-1 (cluster-1) class-2 (cluster-2) class-3 (cluster-3)
(0, 2, 4, 6, 12, 14) (−2.1, 4, 6, 8, 14, 16) (2.1, 6, 8, 10, 16, 18)

Syn. 4− 4 class-1(cluster-1) class-2 cluster-2) class-3 (cluster-3) class-4 (cluster-4)
(−2, 1, 1.5, 2, 2.5, 3) (2,−1,−1.5,−2,−2.5,−3) (4,−3,−4,−4,−6,−7) (6, 5, 4, 4, 6, 7)

As we expected, all three approximations have very strong correlations with DM (Fig. 45).

E(2C) is slightly better than E(MC), but with the use of information, E(VI) achieves the

best correlation with DM. Surprisingly, other original clustering diversity measures also

show the strong correlations with DM, even though they do not go through any adjustment.

Wallace-1 is the clustering diversity measure with the best correlation with DM, but E(VI)

has very close performance (Table XLVII). To summarize, the proof of concept approves

the estimation of DM from the Mirkin’s Metric. It also suggests a strong correlation

between DM and the clustering diversities using K-Nearest Prototypes as the classification

method.

5.3.2 Correlation Measurements on UCI Machine Learning Problems

To understand more about the connections between the clustering diversities and DM,

we measured their correlations on problems extracted from the UCI machine learning
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Figure 45 The relationships between DM and 3 approximations: E(2C), E(MC) and
E(VI) on the synthetic data 4− 4

repository, and with more sophisticated classification algorithms. Several requirements are

concerned for the selection of pattern recognition problems. First, to avoid the dimensional

curse during the training, each database must have sufficient samples concerning its feature

dimension. Second, to avoid identical samples to be trained in Random Subspace, only

databases without symbolical features are used. Third, to simplify the problem we do not

use databases with missing features. According to the requirements enlisted above, we

carried out our experiments on 6 databases selected from the UCI Machine Learning Data

Repository (Table XLVIII). For each of 6 databases and each of 5 classification algorithms,

18 classifiers were generated as the pool for base classifiers. Classifiers were then selected
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Table XLVII

The correlations between the disagreement measure (DM) and the clustering diversities
in the synthetics data. The nearest prototype (the centroid of the nearest cluster) is used

as the classification method

Mirkin’s E(2C) E(MC) E(VI) W-1 W-2 F.M. Rand Jacard
Synthetic 2− 2 0.99 0.99 0.99 0.99 -0.99 -0.99 -0.99 -0.99 -0.99
Synthetic 2− 4 0.99 0.99 0.99 0.97 -0.98 -0.99 -0.99 -0.99 -0.99
Synthetic 2− 6 0.97 0.97 0.98 0.94 -0.94 -0.97 -0.96 -0.97 -0.97
Synthetic 3− 3 0.84 0.84 0.83 0.82 -0.82 -0.84 -0.78 -0.83 -0.84
Synthetic 4− 4 0.89 0.89 0.88 0.96 -0.96 -0.89 -0.88 -0.89 -0.89

Table XLVIII

The problems extracted from the UCI Machine Learning Data Repository for the
correlation measurements between DM and the clustering diversities

database number of number of number of number of number of number of
classes clusters train samples test samples features cardinality

Pima-Diabetes 2 3 384 384 8 4
Liver-Disorders 2 5 144 144 6 3

Wisconsin Breast-Cancer 2 12 284 284 30 5
Wine 3 4 88 88 13 6

Image Segmentation 7 53 210 2100 19 4
Letters Recognition 26 87 10000 10000 16 12

from this pool to construct ensembles. In our experiments, we apply Normal Densities

Based Linear Classifiers (LDC), Quadratic Discriminant Classifiers (QDC), K-Nearest

Neighbors Classifiers (KNN), Parzen Windows Classifiers (PWC) and Radial Basis Neural

Network Classifiers (RBN) (19) for the classification tasks. For each test, we randomly

selected classifiers to construct the ensemble, and each classifier had the same probability

(p = 0.3) to be chosen as a member of Ensemble of classifiers. Thus the correlations

were measured for ensembles with the different numbers of classifiers, and then the mean

values of correlations were calculated. To get the accurate measure, for each database

and each classification algorithm, 3000 ensembles were constructed for the correlation

measurement.
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Each classifier was created in different feature subspace and used all of training samples.

We carried out the correlation measurement between the disagreement measure (DM)

(49) as the classifier diversity and 9 clustering diversities, including 2 Wallace Indices,

Fowlkes-Mallows Index, Rand Index, Jacard Index, Mirkin’s Metric, and 3 modified clus-

tering indices (E(2C), eq. 5.23; E(MC), eq. 5.24; E(VI), eq. 5.25) derived from Mirkin’s

Metric, the diversity parameter α is set as 0.3.

Table XLIX

The correlations between the clustering diversities and the disagreement measure (DM)
in UCI databases

Mirkin’s E(2C) E(MC) E(VI) W-1 W-2 F.M. Rand Jacard
Pima-Diabetes 0.40 0.41 0.37 0.40 -0.40 -0.39 -0.32 -0.37 -0.40
Liver-Disorders 0.57 0.58 0.58 0.48 -0.48 -0.58 -0.56 -0.58 -0.57

Wisconsin Breast-Cancer 0.61 0.64 0.69 0.72 -0.72 -0.61 -0.63 -0.62 -0.61
Wine 0.56 0.56 0.57 0.52 -0.52 -0.57 -0.58 -0.57 -0.56

Image Segmentation 0.38 0.38 0.34 0.20 -0.20 -0.35 -0.37 -0.37 -0.38
Letters Recognition 0.52 0.52 0.58 0.51 -0.51 -0.57 -0.56 -0.57 -0.52

First, we notice there are still correlations between the three approximations and DM (Ta-

ble XLIX), but much less strong than those we observed in the synthetic data with KNP

(Table XLVII). Second, we note that in general, E(MC) has the better performance with

E(2C), but with the use of the variation of information, E(VI) does not improve the corre-

lation and apparently worse than E(MC). This indicates that the variation of information

might differ hugely from one cluster-pair to another cluster-pair. Third, other clustering

diversity measures also shows the comparable correlation with DM, but none of them

outperforms E(MC). Since we used various classification algorithms, including more so-

phisticated ones such as RBN, QDC and PWC, the boundaries between classes are more

complicated than the simple clustering can define, this might be a major cause of the loss

of the correlation between clustering diversity measures and DM.

So far, we now know that, in general, there exist correlations between DM - a classifier

diversity measure - and the clustering diversities in Random subspace. We know that the
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data diversity can lead to the classifier diversity, and this data diversity can be measured in

Random subspace using clustering diversity.

5.4 Discussion

In this work, we examined whether the clustering diversity can represent the data diversity

of different feature subsets in random subspaces, and whether the use of the clustering

diversity as the data diversity measure could allow us to apply a classifier-free ensemble

selection scheme.

For the use of the clustering diversity, we show that there is a strong connection between

the Disagreement Measure, a classifier diversity measure, and Mirkin’s metric, one of

the clustering diversity measures. We derived the E(2C), E(MC) and E(V I) to bet-

ter approximate Disagreement Measure from Mirkin’s metric. The proposed approxi-

mations were shown to have the strong correlations with Disagreement Measure. We

also observed the strong correlations between other clustering diversity measures and Dis-

agreement Measure. The correlations between the clustering diversity and Disagreement

Measure indicate that the data diversity can be somehow approximated even before the

construction of classifiers for the Random subspace.

5.5 Conclusion

In general, the classifier diversities are used to construct an ensemble for the better clas-

sification, and the clustering diversities are used to construct an ensemble for the better

clustering. They have different purposes, and their relationship was not fully investigated.

In this work, we conclude that there is a close relationship between Mirkin’s metric and

Disagreement Measure, and we further derived the approximation of Disagreement Mea-

sure based on Mirkin’s metric. We observed strong correlations between the Disagreement

Measure and most clustering diversities.
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Given that this is the first exploratory work on the relationship between classifier diver-

sities the clustering diversities, we tried to figure out the correlations between them and

carried out necessary experiments. Due to the complexity of the derivation of E(MC)

and E(V I), we do not include them in this appendix, but leave them in the appendix 6 for

interested readers.



APPENDIX 6

The Approximation of the Disagreement Measure Based on Mirkin’s Metric
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The appendix 5 demonstrate experimentally that there is a strong correlation between clas-

sifying diversities and clustering diversities. We scanned most classifying diversities and

clustering diversities, and conclude that we might figure out a close relationship between

Mirkin’s metric, a clustering diversity measure, and Disagreement Measure, a classifying

diversiy measure.

In this appendix, we try to approximate Disagreement Measure using only Mirkin’s met-

ric. The objective is to approximate a possible classifier diversity when only clustering

result is given. Apparently, since there is no available label during the clustering, this

approximation is under a number of assumption. However, by carrying out these approxi-

mations and measuring the correlations between the approximations and the true classifier

diversity, we might have an insight into the circumstances under which an approximation

of a classifier diversity is feasible, under which a strong correlation with a classifier di-

versity exists, and under which we can carry out an classifier-free ensemble selection that

presented in the chapter 6 in this thesis.

For this purpose, we propose three different approximations of Disagreement Measure

based on Mirkin’s metric. All three approximations, E(2C), E(MC) and E(V I), are

based on various circumstances. Note that E(2C) has been derived in the appendix 5,

as well as the correlation measurements between three approximations and Disagreement

Measure. In this appendix, we simply give some details on how the approximations of

E(MC) and E(V I) are obtained.

To justify the need of E(MC) and E(V I), we can point out that the data points belonging

to one class will, in general, form more than one cluster, and thus the hypothesis made for

E(2C) was extremely simplified. We are interested in having better approximation of the

Disagreement Measure from the Mirkin’s Metric based on more general conditions. These

approximations are somehow complicated, and due to the limit of the space we are unable

to provide all the details but only the important concepts, assumptions and derivations.
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At the end, we need to mention that these approximations are not essential for the

classifier-free ensemble selection scheme introduced in chapter 6. However, since they

do suggest that there is a strong relationship between a classifier diversity and a clustering

diversity, we decided to add these approximations in this appendix for interested readers.

6.1 Extension on Multi-clusters clustering: E(MC)

In the appendix 5 we assume that the data classified as two classes can be clustered into two

clusters. This assumption, however, is simplified, and in real problems we usually have

more than one cluster for each class. To deal with this problem, we have to reformulate

our hypothesis. We suppose that, if the data can be classified into two classes based on a

classifier, then, it is possible that they can be clustered into several clusters. In this case,

each class might have more than one cluster, but the members of a cluster belong to the

same class. For the development in this section, we make the following assumptions:

a. The data set is a 2-class problem.

b. The data set can be perfectly partitioned into K clusters, K ≥ 2.

c. For each cluster, all the samples in one cluster belong to the same class.

d. Both classes have similar number of samples.

e. Both classes have similar number of clusters.

f. For the samples classified as the same class by both classifiers, they are clustered in

the same cluster by both clusterings.

We assume that, for classifier Di, samples classified as the class x are clustered into Mxo

clusters, with Nxx + Nxy samples in total. The samples classified as the class y are clus-

tered into Myo clusters, in this case we have Nyy + Nyx samples. For classifier Dk, the
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samples classified as the class x are clustered into Mox clusters, with Nxx + Nyx sam-

ples. The samples classified as the class y are clustered into Moy clusters, with Nyy + Nxy

samples (Fig.46). But the relation between clusters is quite complicated. It depends on

Figure 46 In a two class problem, with class x and class y, each class can form multiple
clusters. For classifier Di, Nxx + Nxy samples are classified as class x and
clustered into Mxo clusters, and Nyx + Nyy samples are classified as class
y and clustered into Myo clusters; for classifier Dk, Nxx + Nyx samples are
classified as class x and clustered into Mox clusters, and Nxy + Nyy samples
are classified as class y and clustered into Moy clusters

the geometrical properties in feature space, and cannot be analyzed easily. Still, we can

set measures about entropy, mutual information and variation of information, and continue

our discussion. First we have to assume that for Nij samples and Mkl clusters, each cluster

has the size of Nij

Mkl
samples. It is reasonable when each cluster has the similar distance of

radius and the samples have similar density of the distribution. This is quite fair especially

in K-Means clustering.

6.1.1 Concept of mutual Information and Variation of Information

Then we introduce the concept of the mutual information and the variation of information

(72) here. For a clustering C, suppose that we have K clusters, we can calculate the global
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entropy of this clustering by summing up the entropy of each cluster :

H(C) = −
K∑

k=1

P (k) log P (k) (6.1)

where P (k) is the probability that a sample belongs to cluster k. Then, for two clusterings

C and C∗, we can make the definition of the probability that a sample belongs to cluster

Ck in clustering C and belongs to Ck∗ in clustering C∗:

P (k, k∗) =
|Ck

⋂
Ck∗|

n
(6.2)

where n is the number of total samples. Then the mutual information between clustering

C and C∗ can be defined as :

I(C, C∗) =
K∑

k=1

K∗∑
k∗=1

P (k, k∗) log
P (k, k∗)

P (k)P (k∗)
(6.3)

Apparently this will satisfy :

I(C, C∗) ≤ min(H(C), H(C∗)) (6.4)

The variation of information (72) is defined as :

V I(C, C∗) = H(C) + H(C∗)− 2I(C, C∗) (6.5)

Considering our problem, we add four variations of the information measures to evaluate

the relations between four groups of clustering. The samples are labeled as Nxx, Nxy,

Nyx, and Nyy. For Ci clustering, Nxx + Nxy samples are clustered into Mxo clusters,

and Nyx + Nyy samples are clustered into Myo samples. For Ck clustering, Nxx + Nyx

samples are clustered into Mox samples, and Nxy + Nyy samples are clustered into Moy

samples (Table L). Their values reflect the degree of the variation of information. When
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Table L

Definition of the four variations of information measures

Mxo(for Nxx&Nxy) Myo(for Nyy&Nyx)
Mox(for Nxx&Nyx) Mxx Myx

Moy(for Nyy&Nxy) Mxy Myy

the clustering Mxo and Mox are totally random, for P (k), k ∈ Mxo, and P (k∗), k∗ ∈ Mox,

we have P (k, k∗) = P (k)P (k∗), so that I(C, C∗) = 0, Mxo ∈ C, Mox ∈ C∗. The

variation of information V I(C, C∗) = H(C) + H(C∗), and we set the value of variation

of the information measure Mxx as Mxo ·Mox.

However, when Mxo and Mox have the same number of clusters, i.e., K = K∗, and these

clusters maintain the same partition for all Nxx samples, the clusterings are identical for

sharing samples, in this case, P (k, k∗) = P (k) = P (k∗), and I(C, C∗) = H(C) =

H(C∗), Mxo ∈ C, Mox ∈ C∗, so we get the zero variation of information, V I(C, C∗) = 0.

As a result, we set the value of Mxx as Mxx = Mxo = Mox, and the similar definition for

other three variations of information measures. Later we will explain what the use of these

variations of information measures is.

min(Mxo, Mox) ≤ Mxx ≤ Mxo ·Mox (6.6)

min(Mxo, Moy) ≤ Mxy ≤ Mxo ·Moy (6.7)

min(Moy, Myo) ≤ Myy ≤ Moy ·Myo (6.8)

min(Myo, Mox) ≤ Myx ≤ Myo ·Mox (6.9)

6.1.2 Decomposition of the Counting of Sample-Pairs
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According to the definition of pairwise samples measure, we can calculate the value of

C11, C10, C01 and C00. These calculations will need some maneuvers, and we detail the

process of the decomposition of these terms below.

a. Decomposition of the Sample-Pairs in C11

For Nxx, there are Mxo · Mox blocks. Using eq. 5.16, eq. 5.17, suppose that each

cluster has the same number of samples, we just simply set for each block there are

S = Nxx

Mxo·Mox
samples, with B = Mxo ·Mox blocks. As a result, we can calculate the

number of sample-pairs in C11 for samples labels as Nxx:

C11(Nxx) =
B · S · (S − 1)

2
=

Mxo ·Mox(
Nxx

Mxo·Mox
)( Nxx

Mxo·Mox
− 1)

2
=

Nxx(
Nxx

Mxo·Mox
− 1)

2
(6.10)

As we denote Mxx = Mxo ·Mox, we can re-write:

C11(Nxx) =
( N2

xx

Mxx
−Nxx)

2
(6.11)

We do the same process for C11(Nxy), C11(Nyx), C11(Nyy), and calculate their sum

to obtain C11:
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C11 = C̃11 = C11(Nxx) + C11(Nxy) + C11(Nyx) + C11(Nyy) (6.12)

=
N2

xx

2 ·Mxx

− Nxx

2
+

N2
yy

2 ·Myy

− Nyy

2

+
N2

xy

2 ·Mxy

− Nxy

2
+

N2
yx

2 ·Myx

− Nyx

2
(6.13)

Figure 47 Assuming each class can form multiple clusters, we hope to derive the
relation between the clustering diversity and the classifier diversity. We show
an example of how to calculate C10: For 4 partitions, 6 different relationships
must be considered and calculated. The similar calculation can be applied on
C01

b. Decomposition of the Sample-Pairs in C10 and C01

The similar analysis can be used to find C10 and C01. Remember that we have

multiple clusters, but all these clusters can be analyzed via 4 blocks: Nxx, Nxy, Nyx,

and Nyy (See Fig.46). For Ci clustering, Nxx + Nxy samples are clustered into Mxo

clusters, and Nyx + Nyy samples are clustered into Myo clusters. For Ck clustering,

Nxx + Nyx samples are clustered into Mox clusters, and Nxy + Nyy samples are

clustered into Moy clusters.
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In order to calculate C10, one must consider the sample-pairs clustered into different

clusters by clustering Ci but into the same clusters by clustering Ck (Fig.47). We

have 6 cases here: the sample-pairs in Nxx, the sample-pairs in Nxy, the sample-

pairs in Nxx and in Nxy, the sample-pairs in Nyx, the sample-pairs in Nyy, the

sample-pairs in Nyx and in Nyy (See Fig. 46 and Fig.47). For one thing, con-

sidering C10(Nxx), we need to count the sample-pairs on B = Mxo · Mox blocks

among Nxx samples, each block has S = Nxx

Mxo·Mox
samples, for C10 we also need to

count the number of samples of each cluster clustered by Ck (See Fig. 47), denote as

Sk = Nxx

Mxo
. According to the definition of C10, we need to take into consideration the

number for the cluster-pairs in the same cluster under Ci but not under Ck. Since for

each sample, there are (Sk − S) other samples with which it can form sample-pairs

in the same cluster under Ci but not under Ck, we can count the total sample-pairs

as :

B · S · (Sk − S)

2
=

Mxo ·Mox
Nxx

Mxo·Mox
( Nxx

Mxo
− Nxx

Mxo·Mox
)

2
(6.14)

The similar process can be realized on C10(Nxy), C10(Nxx, Nxy), C10(Nyx),

C10(Nyy), C10(NyxNyy). We write a a short summary for sample-pairs accounted

for C10 (Table LI).

By summing them up, and by denoting Mxx = Mox · Mxo,Mxy = Mxo · Moy,

Myx = Mox ·Myo,Myy = Moy ·Myo, we can get C10

C10 = Ĉ10 + C̃10 (6.15)

Ĉ10 =
NxxNxy

Mxo

+
NyyNyx

Myo

(6.16)
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Table LI

Decomposition of C10 by Fig.47

source number of number of number of number of
of blocks samples sample-pairs total

C10 per block sample-pairs

C10(Nxx) Mxo ·Mox Nxx
Nxx

Mxo·Mox
( Nxx

Mxo
− Nxx

Mxo·Mox
)

Mxo·Mox
Nxx

Mxo·Mox
( Nxx

Mxo
− Nxx

Mxo·Mox
)

2

C10(Nxy) Mxo ·Moy Nxy
Nxy

Mxo·Moy
( Nxy

Mxo
− Nxy

Mxo·Moy
)

Mxo·Moy
Nxy

Mxo·Moy
(

Nxy
Mxo

− Nxy
Mxo·Moy

)

2

C10(Nxx, Nxy) Mxo Nxx&Nxy
Nxx

Mxo

Nxy

Mxo

Mxo
Nxx
Mxo

Nxy
Mxo

2

C10(Nyx) Myo ·Mox Nyx
Nyx

Mox·Myo
( Nyx

Myo
− Nyx

Myo·Mox
)

Mox·Myo
Nyx

Mox·Myo
(

Nyx
Myo

− Nyx
Myo·Mox

)

2

C10(Nyy) Myo ·Moy Nyy
Nyy

Myo·Moy
( Nyy

Myo
− Nyy

Myo·Moy
)

Myo·Moy
Nyy

Myo·Moy
(

Nyy
Myo

− Nyy
Myo·Moy

)

2

C10(NyxNyy) Myo Nyy&Nyx
Nyy

Myo

Nyx

Myo

Myo
Nyy
Myo

Nyx
Myo

2

C̃10 =
N2

xx

2
(

1

Mxo

− 1

Mxx

) +
N2

xy

2
(

1

Mxo

− 1

Mxy

)

+
N2

yy

2
(

1

Myo

− 1

Myy

) +
N2

yx

2
(

1

Myo

− 1

Myx

) (6.17)

For C01, we do the similar calculation as C10, then we get :

C01 = Ĉ01 + C̃01 (6.18)

Ĉ01 =
NxxNyx

Mox

+
NyyNxy

Moy

(6.19)

C̃01 =
N2

xx

2
(

1

Mox

− 1

Mxx

) +
N2

xy

2
(

1

Moy

− 1

Mxy

)

+
N2

yy

2
(

1

Moy

− 1

Myy

) +
N2

yx

2
(

1

Mox

− 1

Myx

) (6.20)
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c. Decomposition of the Samples-Pair in C00

For the calculation of C00, the similar method can be used. But it is somehow more

complicated. Because in each block Nxx, Nxy, Nyx, Nyy, we get multiple clusters.

So the samples in the same block may be in different clusters under both clustering

Ci and Ck. That means we have 10 different cases here: the sample-pairs in Nxx

and in Nyy, and the sample-pairs in Nxy and in Nyx, all of which will contribute to

C00. But for the sample-pairs in Nxx and in Nxy, the sample-pairs in Nxx and in

Nyx, the sample-pairs in Nyy and in Nxy, the sample-pairs in Nyy and in Nyx, most

sample-pairs will contribute to C00, but not all of them. For the sample-pairs in Nxx,

the sample-pairs in Nxy, the sample-pairs in Nyy, the sample-pairs in Nyx, there are

fewer sample-pairs will become C00. By summing them up, we get the value of C00:

C00 = C̈00 + Ĉ00 + C̃00 (6.21)

C̈00 = NxxNyy + NxyNyx (6.22)

Ĉ00 = NxxNxy(1−
1

Mxo

) + NxxNyx(1−
1

Mox

)

+NyyNxy(1−
1

Moy

) + NyyNyx(1−
1

Myo

) (6.23)

C̃00 =
N2

xx

2
(1− 1

Mxo

− 1

Mox

+
1

Mxx

)

+
N2

xy

2
(1− 1

Mxo

− 1

Moy

+
1

Mxy

)

+
N2

yy

2
(1− 1

Myo

− 1

Moy

+
1

Myy

)

+
N2

yx

2
(1− 1

Myo

− 1

Mox

+
1

Myx

) (6.24)
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We note that all these terms satisfy that :

C11 + C10 + C01 + C00 =
N(N − 1)

2
(6.25)

where N is the number of total samples.

N = Nxx + Nxy + Nyx + Nyy (6.26)

As we look at these terms, we can find that all Ĉ01, Ĉ10, and Ĉ00 depend on the number

of clusters Mxo, Mox, Myo and Moy, but there is no terms as Mxx, Mxy, Myx, Myy, i.e.,

they are independent from the variation of information. C̃00, C̃10, C̃01 and C̃00 contain

the terms as Mxx, Mxy, Myx, Myy, i.e., as a result, they depend heavily on the variation

of information. C̈00 is the original term of C00 for two-clusters problems, it is absolutely

independent. When the number of clusters increases, it is clear that there is a huge increase

in C00, too. The variations of information measure, bounded by the number of clusters,

will also increase, and this lead to a quick decrease of C11. The increase of the number of

clusters will also lead to the decrease of C10 and C01, but if the variation of information is

low, then we have a lower slope in the curve of its decline, and vice versa.

It is interesting because the measures of the variation of information, based on the geo-

metrical properties of feature space and bounded by the number of clusters do matter if

we consider the diversity of clustering. If we look at Mirkin’s metric, we can get :

K(Ci, Ck)

2
= (C10 + C01) = Ĉ01 + C̃01 + Ĉ10 + C̃10 (6.27)

6.1.3 Approximation of Classifier Diversity in Multi-Clusters Clustering
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In cases with very low variation of information, i.e., if we assume that for samples clas-

sified as the same class by both classifiers, they are clustered in the same cluster by both

clusterings, we have Mxy ' {Mxo, Moy}, Myx ' {Myo, Mox}, Mxx ' {Mxo, Mox},

Myy ' {Myo, Moy}, we get :

K(Ci, Ck)

2
= C01 + C10 (6.28)

If two clustering use the same number of clusters, i.e., Mxo + Myo ' Mox + Moy, and if

two classes have the similar number of samples, i.e., Mxo ' Myo and Mox ' Moy, we get

M ' {Myo, Mox, Moy, Mxo}, so the Mirkin’s metric will become :

K(Ci, Ck)

2
=

(Nxx + Nyy)(Nxy + Nyx)

M
+ 2 · (C11 +

N

2
) · (M − 1) (6.29)

This is easy to transform, given that Nxx +Nyy = N11 +N00, and Nxy +Nyx = N10 +N01.

K(Ci, Ck)

2
=

(Nxx + Nyy)(N10 + N01)

M
+ 2 · (C11 +

N

2
) · (M − 1) (6.30)

=
N · (Nxx + Nyy)(DMi,k)

M
+ 2 · (C11 +

N

2
) · (M − 1) (6.31)

In the condition mentioned before, the term Nxx + Nyy can be derived from C11. Given

the diversity parameter α, we can estimate that :

Nxx + Nyy = ((2 · C11 + N) ·M2 +
N2

2
· α)

1
2 (6.32)

So now we can write :

K(Ci, Ck)

2
=

N(((2 · C11 + N) ·M2 + N2

2
· α)

1
2 )(DMi,k)

M
(6.33)
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Finally, DM can be approximated by the clustering diversity, Mirkin’s metric based on

multiple clusters hypothesis :

E(MC)i,k ≡
M · (K(Ci, Ck))

2N(((2 · C11 + N) ·M2 + N2

2
· α)

1
2 )

(6.34)

6.2 Extension on Clustering with Variation of Information: E(V I)

For the development in this section, we make the following assumptions:

a. The data set is a 2-class problem.

b. The data set can be perfectly partitioned into K clusters, K ≥ 2.

c. For each cluster, all samples in one cluster belong to the same class.

d. Both classes have similar number of samples.

e. Both classes have similar number of clusters.

f. The variation of information is similar for all cluster-pairs.

When the clustering has high variation of information, they form very different clusters for

the samples in the same class. To well understand its properties, first we have to assume

that the variation of information measures can be represented with variation coefficients

t1, t2, t3, t4. The variation coefficient t1 is a factor that concerns the difference between

Mxx and Mxo ·Mox, and the variation coefficient t2 is a factor that concerns the difference
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between Mxy and Mxo ·Moy, etc. We define t1, t2, t3 and t4 as follows :

Mxx = t1 ·Mxo ·Mox (6.35)

max(
1

Mxo

,
1

Mox

) ≤ t1 ≤ 1 (6.36)

Mxy = t2 ·Mxo ·Moy (6.37)

max(
1

Mxo

,
1

Moy

) ≤ t2 ≤ 1 (6.38)

Myy = t3 ·Moy ·Myo (6.39)

max(
1

Myo

,
1

Moy

) ≤ t3 ≤ 1 (6.40)

Myx = t4 ·Myo ·Mox (6.41)

max(
1

Myo

,
1

Mox

) ≤ t4 ≤ 1 (6.42)

Given no knowledge about t1, t2, t3 and t4, we need to simplify the calculation and thus

suppose that the variation of information will have similar values for different cluster-

pairs. Given two clustering, we assume that :

t1 = t2 = t3 = t4 = t (6.43)

As we stated before, we assume that both clustering have the similar number of clusters,

each class has the similar number of samples. These assumptions are necessary to deal

with Mxo, Mox, Myo, Moy. When the numbers of clusters in two clustering are similar, we

get :

M = {Myo, Mox, Moy, Mxo} (6.44)
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Here, M is supposed to be the number of clusters for correct and for incorrect classified

samples, so M can be estimated as :

M =
N

2
(6.45)

Using the variation coefficient t as a general variation coefficient, we can simplify the

calculation :

t ·M2 = {Mxx, Mxy, Myx, Myy} (6.46)
1

M
≤ t ≤ 1 (6.47)

Actually, under our framework of problems, the entropy and the mutual information can

be re-written as :

H(C) =
K∑

k=1

1

M
log M (6.48)

I(C, C∗) =
K∑

k=1

K∗∑
k∗=1

1

t ·M2
log

1

t
(6.49)

The variation of information maintains the same term :

V I(C, C∗) = H(C) + H(C∗)− 2I(C, C∗) (6.50)

If clustering are totally random, t = 1 and I(C, C∗) = 0, we have the maximum variation

of information as V I(C, C∗) = 2H(C) = 2H(C∗). On the other side, if two clusterings

are identical, t = 1
M

, we have I(C, C∗) = H(C) = H(C∗), so the variation of information

will be zero, V I(C, C∗) = 0. Indeed, the variation coefficient t is designed to reflect the
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degree of the variation of information. We can set a linear function to estimate t:

t =
M − 1

(H(C) + H(C∗)) ·M
· V I(C, C∗) +

1

M
(6.51)

where the bounds t = 1
M

for V I(C, C∗) = 0, and t = 1 for V I(C, C∗) = H(C) + H(C∗)

will be satisfied. Considering the clustering diversity, the Mirkin’s metric will be :

K(Ci, Ck)

2
= (C10 + C01) = Ĉ01 + C̃01 + Ĉ10 + C̃10 (6.52)

To elimintae the terms C̃10 and C̃01, one can calculate :

Ĉ01 + Ĉ10 =
K(Ci, Ck)

2
− 2 ∗ (tM − 1) · (C11 +

N

2
) (6.53)

Developing the terms Ĉ01 and Ĉ10, we can get :

(Nxx + Nyy)(Nxy + Nyx) = M · (K(Ci, Ck)

2
− 2 ∗ (tM − 1) · (C11 +

N

2
)) (6.54)

Gievn that Nxx + Nyy = N11 + N00, and Nxy + Nyx = N10 + N01, and the disagreement

measure DMi,k = N10+N01

N
, we can write :

DMi,k · (Nxx + Nyy) =
M

N
· (K(Ci, Ck)

2
− 2 ∗ (tM − 1) · (C11 +

N

2
)) (6.55)

Again, here we need to solve the value of Nxx + Nyy. We can get the approximation from

C11 and α:

Nxx + Nyy = ((2 · C11 + N) · t ·M2 +
N2

2
· α)

1
2 (6.56)
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Then the classifier diversity DM, can be approximated by Mirkin’s metric taking into

account the variation of information :

E(V I)i,k ≡
M
N
· (K(Ci,Ck)

2
− 2 ∗ (t ·M − 1) · (C11 + N

2
))

((2 · C11 + N) · t ·M2 + N2

2
· α)

1
2

(6.57)

Notice that if we set t = 1
M

, i.e., the situation of zero variation of information, we can get

the eq. 6.34.
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